Laplace Transform

and Its Application

EXE| nTrRODUCTION

Time-domain analysis is the conventional method of analysing a network. For a simple network with first-
order differential equation of network variable, this method is very useful. But as the order of network variable
equation increases, this method of analysis becomes very tedious. For such applications, frequency domain
analysis using Laplace transform is very convenient. Time-domain analysis, also known as classical method,
is difficult to apply to a differential equation with excitation functions which contain derivatives. Laplace
transform methods prove to be superior. The Laplace transform method has the following advantages:

(1) Solution of differential equations is a systematic procedure.
(2) Initial conditions are automatically incorporated.
(3) It gives the complete solution, i.e., both complementary and particular solution in one step.

Laplace transform is the most widely used integral transform. It is a powerful mathematical technique which
enables us to solve linear differential equations by using algebraic methods. It can also be used to solve
systems of simultaneous differential equations, partial differential equations and integral equations. It is
applicable to continuous functions, piecewise continuous functions, periodic functions, step functions and
impulse functions. It has many important applications in mathematics, physics, optics, electrical engineering,
control engineering, signal processing and probability theory.

EE®| LaPLACE TRANSFORMATION

The Laplace transform of a function f(¢) is defined as

F(s)=L{f(O}= [ f(tye™ dt
0

where s is the complex frequency variable.
s=0+jo

The function f(#) must satisfy the following condition to possess a Laplace transform,

17w di <o
0



11.2 Network Analysis and Synthesis

where ¢is real and positive.
The inverse Laplace transform L' {F (s)} is

o+ ]oo
1

f(t )—— _[ F(s)e' ds

0']00

EEEN| LAPLACE TRANSFORMS OF SOME IMPORTANT FUNCTIONS

1.

Constant Function k
The Laplace transform of a constant function is

hod —st *
- Jorrae 2] 4
0 0

Function t
The Laplace transform of f{¢) is

Lit"} = [1"e™dr
0

. d.
Putting st =x, dt = al
s
oo n oo [ 1
L{Z”}zj(f)e = J e tdx= K ,s>0,n+1>0
s
0 0
If n is a positive integer, \/n +1=n!
L{t"} =
Sn+1

Unit-Step Function

The unit-step function (Fig 11.1) is defined by the

equation,
u(t)=1 t>0 ;
=0 t<0
The Laplace transform of unit step function is

A

A

Y

[ e—st ° 1 0

L{u(t)}:_([be_“ dt:[— | ==

Delayed or Shifted Unit-Step Function
The delayed or shifted unit-step function (Fig 11.2) is defined
by the equation

u(t—a)=1 t>a
=0 t<a
The Laplace transform of u (t — a) is

L{u(t—a)} = Tl-e"” dt = {— e } = e”

Fig. 11.1 Unit-step function

Y

0 a

Fig. 11.2 Shifted unit-step function
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11.3 Laplace Transforms of Some Important Functions 11.3

Unit-Ramp Function r(t)
The unit-ramp function (Fig 11.3) is defined by the equation

r(t) =t t>0

=0 t<0
The Laplace transform of the unit-ramp function is s .
0 0| 8
|
L)} = { = Fig. 11.3  Unit-ramp function

Delayed Unit-Ramp Function r(t-a

The delayed unit-ramp function (Fig 11.4) is defined by the
equation
rit—a)=t t>a
=0 t<a > t
The Laplace transform of 7 (¢ — a) is 0] @

e Fig. 11.4 Delayed unit-ramp function

S2

L{r(t-a)} = Ire_” dt =
‘ s(1)
Unit-Impulse Function

The unit-impulse function (Fig 11.5) is defined by the equation
o()=0 t#0 1

and [owyar=1  t=0 3 ot

—o0

The Laplace transform of the unit-impulse function is Fig. 11.5 Unit-impulse function

at
A

L{s(1)} = j5(r)e‘” dt=1
0

Exponential Function (e®)
The Laplace transform of the exponential function (Fig 11.6) is

@ o —(s—a)t |7 >
_ R e 1 0
L{eat}zjea[e ot dtzje (s-a)t dtz[— :| =
0

0 0 S—da S—a

Sine Function Fig. 11.6 Exponential function

We know that sinwt =

L jor _ -jor
2.[c e ]

J
The Laplace transform of the sine function is

L ot _ - 1 ~ _ 1| 1 1
L{sinwt}=L{—(e/” —e /") =—[L{e~"‘”}—L{e /‘"’}]:_ _ = @

2j 2j 2] s—jo s+ jo 52+a)2
Cosine Function

r . .

We know that cos wt = E[e"“” +e /" ]
The Laplace transform of the cosine function is

Lo | Iy , 1 1 1
L{cos a)t} = L{_(ej(m + e—/wt)} _ —[L{e jot & L{e—_/(m}] _ 1 + _ Ky

- 2 2[s—jo stjo]| s+’
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11. Hyperbolic sine function

. 1 _
We know that sinh wt = E(e“” = L )

The Laplace transform of the hyperbolic sine function is

2 1 ol —wt 1 ! —wt 1 1 1
L{smhwt}:L{E(e —e )}=E[L{e }—L{e }]:—[ - :|= —

2ls—w s+ow

12. Hyperbolic cosine function

1
We know that cosh wt = E(e“” g o )

The Laplace transform of the hyperbolic cosine function is

1 1 1 1 1 s
L COSh wt! = L L wl 8 )—{ul I L )(1)[ & L —wt — + —
{ j {2(6 ‘ )} 2[ et e }] Z[S—w s—w] s2 —w?

13. Exponentially Damped Function
Laplace transform of an exponentially damped function e f'(¢) is

Li{e fydr} = T f(e ™ e dt = ]o S(@0)e™ " dt = F(s+a)
0 0"

Thus, the transform of the function e £'(¢) is obtained by putting (s + @) in place of s in the transform of /(7).

- : (0] = ; w
L{e “ sin mt} =— L{e “ sinh wt} B
(s+a) +w (s+a) —o
— S+a _ S+a
L{e “ cos a)t} =——— L{e “ cosh wt} =
(s+a) +w° (s+a) —w

IEE®N| PROPERTIES OF LAPLACE TRANSFORM
11.4.1 Linearity
If L{fi(1)} = Fi(s) and L{f(0)} = Fa(s) then L{afi(1)+ bf2(6)} = aFi(s) + bF(s)

where a and b are constants.

Proof Lif@)} =] fye™ dr
0

Liah()+ b2 (1)} = [{afi(0) + b (0)}e™dt = a[ fi(t)e ™" dt+b| fr(t)e™ dt = aF (s)+bF; (s)
0 0 0

" SENICRESE  Find the Laplace transform of 4t° + sin 3t +e”" .

. 5 . 2 3 1 8 3 1
Solution  L{4:* +sin3r+e*} = 4L{t*}+ L{sin3}+ L{e } =4 S+ 5—+ =< +5—+
s 49 s-2 5 49 s5-2

"m Find the Laplace transform of t° —e ' + cosh® 3t .

. g , . _ P
Solution 172 — 7 4 cosh? 3t} = L{t*}— L{e >} + L{cosh® 3t} = L{r’} - L{e 2’}+EL{1+cosh6t}
2 1 1 s

= t—t—
S s+2 25 2(s—36)




11.4 Properties of Laplace Transform 11.5

" SEINICHEERN  Find the Laplace transform of (sin 2t —cos 2t)2.

Solution  [((sin 27 — cos 2¢)?} = L{sin® 27+ cos® 21 — 2 cos 2t sin 21} = L{1 —sin 4} = L{1} — L{sin 4¢}
1 4

s 52416

" SEINI U  Find the Laplace transform of cos(wt +b) .

Solution L{cos(wt+ b)} = L{cos wt cos b —sin wtsinb} = cos bL{cos @t} —sin bL{sin @t}

=cosbh- —sinb-

s+ s? + w?
11.4.2 Time Scaling
If L{f(t)} = F(s) then L{f(at)} = lF(fj
a a
Proof Lify=[ fye™ dt
0

Lif(a)}= [ flae™ dt
0

. dx
Putting at =x, dt = —
a

LiCf@ny= [ 1o s By RO F(i)
0 a a \a

a

| Example 11.5 IfL{f(t)}zZog(%),ﬁndLﬁf(Zt)}.
S

Solution

LUf(0)} = log(j i )

By time-scaling property,

543

_l 2 - :l s+6
L{f(20)} = 210gL£+1J 210g(8+2]
2

| Example 11.6 IO TN PIVIEN S

S
2 s
Solution Lyoi= S_3e

By time-shifting property,

12 2 154 0 g
L{f(3t)}=§ 363:—5—632—863

s
3
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11.4.3 Frequency-Shifting Theorem
If L{f(t)} = F(s) then L{e™™ f(£)} = F(s +q)

Proof L{f(H)}= Jf(t)t e'd
0

L™ [0} = [ fe™ di =] )™ di = F(s+a)
0 0

" SCIII WA  Find the Laplace transform of et

: 4!
dy
Solution Lit*y=—
By frequency-shifting theorem,
!
L{e—3l‘t4}= 4' -
(s+3)
" Example MWW Find the Laplace transform of (t + ])2 e .
. ’ ? 2 2 1
Solution L{+D)}=L{t" + 2t + 1} =—=+—+—
s st s
By frequency-shifting theorem,
2 2 1
L{(t+1)e'} =

(s—1)° +(s—l)2 +s—l

" Example MR Find the Laplace transform of e’ sin’t .

3.3
4(s>+1)  4(s*+9)

L{sin’ 1} = %L{3 sin  —sin 3t} =

Solution By frequency-shifting theorem,
3 ~ 3 ~ 3 ~ 3 _ 6
(s—4)*+11 4(s—4)*+9] 4(s*—8s+17) 4(s* —8s+25) (s> —8s+7)(s> —8s+25)

" SEINNICHEMON  Find the Laplace transform of cosh at cos at.

at —at
: e” +e 1 _
Solution cosh at cos at = [T]COS at = E(e”’ cosat +e “ cosat)

L{e* sin’ 1} =

L{cosat} =
s*+a’

1 _
L{cosh at cosat} = 7 L{e™ cosat+e " cosat}

By frequency-shifting theorem,

1— s—a s+a 1 s—a s+a
L{cosh at cos at} =— 5 >+ i 5= == > +— =
2|(s—a) +a" (s+a) +a 2l s°+2a" =2as s” +2a" +2as

[ (5 —a)(s® +2d% + 2as) + (s + a)(s* + 24> —2as):| S

(5% +2a%)* — 4d%5*

N | —

st +aa*



11.4.4 Time-Shifting Theorem

If L{f(¢t)} = F(s) then L{f(t—a)}=e “F(s)

Proof Lif(t) = j f(t)e™ dt
0
Lif(t-a) =] ft-a)e™ di
0
Putting t—a=x, dt=dx
When t=a, x=0
t—>o0, X—>oo

11.4 Properties of Laplace Transform 11.7

Lif(t-a)}= ]o F(x)e™ ) gy = e—“ST f(x)e™ dx= e—“ST f(H)e™ dt=e“F(s)
0 0 0

" SENICHENEN  Find the Laplace transform of cos(t—a) t>a.

Solution Let f{(t) =cos ¢
s
L{f(t)} = F(s) = —
s”+1
By time-shifting theorem,
L{cos(t—a)}=e“ ZS
s”+1

" SEINACRENYR  Find the Laplace transform of ¢™* t> a.

Solution Let f(t)=¢'

1
Lif()y=F(s)= ]
By time-shifting theorem,

L{et—a} — e—as L
s—1

" SEINICHEMEN  Find the Laplace transform of Sil’l(f - g] t>

Solution Let f(t)=sint

LUf(6)} = F(s) = —

s2+

By time-shifting theorem,

" SCII MY  Find the Laplace transform of (¢ — 1)’

r
7

t>1.
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Solution Letfit)y=¢
3!
Lif(t)} = F(s)=—
S

L{(t—l)3}=e_s3—4!

N

By time-shifting theorem,

11.4.5 Multiplication by t (Frequency-Differentiation Theorem)

| d
If L{f (D)} = F(s) then Lit f(1)} = =—-F(s)

Proof L{f(t)} = F(s)= Tf(t)e_“ dt
Differentiating both the sides w.r.t s using DUIS, 0
%F(s) = %I f(tyedt = I% f()e™ dt
= ]O(—t) (e dt = T {(~tf(t)e™dt=~L{t [(1)}
0 0

Lit f()} = (—I)%F(s)

" SEII UMW  Find the Laplace transform of t sin at.

Solution L{sinat} =

s? +a?

L{tsmat}——diL{smat}——i( a ): 2as

ds\s* +a*) (s> +a*)?
" SCENNI RSN  Find the Laplace transform of t cos’t .
Solution L{cos’#}=1L LcoRat =1L{1+c052,}: 1(14, il )
2 2 2 s s*+4

2
L{tcoszt}=—iL{cos2t} —li(1+ d )=—l|:——+(s t4)1 st] 21 +— 4

ds 2ds\s s> +4 2| §? (s +4)? s2 0 2s? +4)
" SCINI RSV  Find the Laplace transform of t sin’t .
solution L{Sin3t}:L{3smt—sm3t}:l( 3.1 ):g[ 11 ]
4 ANs?+1 s2+9) 4P +1 2 +9

L{tsin3t}=— L{sm t}——zi(—l _ ):_E —2s 2s  |_3s (s> +9)? — (s> +1)?
4ds\ s° +1 S +9 4 (Sz-|—]) (S _|_9) (S +l) (.5'2+9)2

_3s| st +185° +81-5" —24° 1 _3s 16(s>+5)  24s(s°+5)
2 (s +1)%(s2 +9)? T2 (P4D)X2 49 (S +1)2(s2 +9)



11.4 Properties of Laplace Transform

" SEIICHEWEN  Find the Laplace transform of tsin 2t cosh t .

t —t
e te

. . 1 . .
Solution  L{sin2tcosht} = L{sm 2t[ ]} = EL{e’ sin2¢+ e~ sin 2¢}

119

1 2 2 1 1
Y > 2 -2 3
2l (s=1D)"+4 (s+1)"+4| s°—2s+5 s +25+5
1 1 252 25 +2
L{tsin2tcosht}:—iL{sin2tcosht}=—i( 5 +— ): 5 a 5 > sl 5
ds ds\s”—2s+5 s +2s+5) (s°=25+5) (s”+2s+5)

11.4.6 Division by t (Frequency-Integration Theorem)

If L{f(£)}= F(s), then L{@} - TF(S) ds
Proof :

L{f(}=F(s)=[f(0)e™ dr
0
Integrating both the sides w.r.t s from s to e,

]fF(s) ds = T]of(t)e_Stdt ds
s s 0

Since s and ¢ are independent variables, interchanging the order of integration,

mF(s)ds :°° wf(t)e_”ds dt = [ — f()e™ | dt= m—e_“dt
a0

0 0

L {@} = IF(s)ds

N

_,t
" SEINICREWEN  Find the Laplace transform of ! te .

Solution Lil-e ") = 11

s s+l
l-e'| 7 11 o0
L =|L{l-e"Yds= || ———— | ds =|logs —log(s+1
{t}{u } {SHJ [log s —log(s + 1),
s 7 s
:[log—lJ = log — = logl—log — =—log—=
S+ 1+ 1+
[ s s
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—at _ -—bt
" SEICHEWIN  Find the Laplace transform of %.

Solution L{e™® -7y = SR
s+a s+b
L e e TLJe_‘" e "y ds T( ! ! )ds [lo( +a)—log( +b)]oo
—_— = - §i= - = s —log(s
t g ' \s+a s+b . . d
al” a
o 1+— 1+—
=[logs+a] =] log Z =logl—log ;;:—logs+a=10 stb
i 142 142 s+b s+a
s g s
) sinh t
" SEINICHEWEN  Find the Laplace transform of T
t —t
solution Lisiitd= 142 ° =1[L—L)
2 2\s—1 s+1
sinht| 171 1 1 o 1 s—=11"
L = | L{sinht}ds=— || ————{ds=—|log(s—1)—log(s +1)| =—|log—
{ ‘ } £{ } 2{(s—1 s+1) 7 llog(s =1 ~log(s + D), 2[ gs+1:|s
1" 1
1—— 1——
1 1 1 -1 1 1
=— log—“lv =— logl—log—‘lY =——10gS—1=—10gi
2 140 2 140 2 s+l 2 -1
s 1 s

2t sin2
" SCINIIMUWIR  Find the Laplace transform of cosh2t sin2t ; Sin 2t .

. h2¢sin2 2t+—21 1 2,.2 _2,.2
Solution L{M}:L{(e 2t€ sin2f =E I e Stm t L e jm t

L{sin2¢t} = 22
s*+4
in2 2 b= i e : .
L i 2 =JL{sin2t}ds =J 2 ds = tan_li =£—tan_'i=cot_Ii
t A sS2+4 i 2] 2 2 2

By first shifting theorem,

i 2t . =2t ] 52 <
I cosh2sin2¢| _ 1 1€ sin 2t Lle sin2¢(|_ 1 cot‘l(b 2 +cot"(5+2)
t 2 t t 2 2 2

11.4.7 Time-Differentiation Theorem: Laplace Transform of Derivatives
IfL{f(¢)} = F(s) then

L{f'(t)} = sF(s)— f(0)
L{f"(t)} = s*F(s)—sf(0)— £7(0)



11.4 Properties of Laplace Transform 11.11

In general,

L{f ()} = s"F(s)=s"" £(0)=s"2 f7(0) =" £(0)...= f"7V(0)
Proof

L{fo}=[rwe" da

0
Integrating by parts,
L= f0e™ | = [ (o) /e de == f0)+ 5] f(t)e™dt == f(0) +sL{ (1)}

Similarly, ’ ’

Lif" ty==f"+sL{f" 1y = =" (0)+5[=f(0) +SL{f()}] = =f"(0) =5/ (0) + °L{f (1)}
In general, L{f”(z‘)} =s"F(s)—s"" £(0)=s"2 £/(0)=s" £7(0)...— f"7(0)

Pexamolc 1123 [N TIRO DR R s

Solution

oo

LLf(t) = F(s)= L{%ﬂt} =" Lsintjds = | 21 -ds = [tan—l ]°° = %—tan_] s=cot™'s
s 5T+ s

N

L{f"(O)} = sF(s)~ f(0)=scot ' s— lim S22, = 5 oot 8

t—0 f

" Example 11.24 3T L{f(t)} and L{f'(t)} of the following function:

f(t)=3 0<t<5
=0 t>5.
= P = =i 3 3
Solution L{f(t)}:F(s):je‘Stf(t)dt:je‘s’-3dt+J0-dt=3[e ] +0=—(e ¥ -1)==(1-e)
B 0 5 =) 0 S S

LU0} = SF(s) = f(0) = s-> (1= &™) ~3 = -3¢
S

[| Example 11.25 [N OV WA R R

Solution L{f(H)}=F(s)=Lie " sint} = 1 5
(s+5)" +1
’ 1 0 - N
L =sF(s)—- f(0)=s-——————¢ 'sin0l= ———
O} =sF ()=S0 =s Z110s+26 4105426
" Example 11.26 @RaTi L{f(t)} and L{f’(t)} of the following function:
f()y=t 0<t<3

=6 t> 3.
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oo 3 oo —st 3 —st 3 —st |7
Solution L{f(t)}:F(s):J.e‘”f(t)dt=J'e““"tdt+je""’-6 dt:[e -t:| —l:e—z] +6{e ]
0 0 3 ol LS o = 13
3¢ e 1 6 4, _33(3 1)
=t —t—e T ==t | =
s s % s s s s?

L'{f(t)}=sF(s)= f(0)= §+ e (3 —1)

N

11.4.8 Time-Integration Theorem: Laplace Transform of Integral

If L{f(t)} = F(s) then L{ | f(t)dt} = F)
0 S
Proof L{Jf(t)dt} = Tff(t) dt}e_”dt
0 00

Integrating by parts,

oo

[ rrdes=| T roa| <o) | =TI <)< _ T pean =L oy = O
L{{f(t)dr}-[{f(r)dt( — )L J[[ —~ )[ " {f(t)dtﬂdt— { —f(0e™dt =~ L{f (1)} =—

0

t
" SEINNCREWIR  Find the Laplace transform of J€_2’t3dt.
0

!
Solution L= =%
(s+2) (s+2)

L j 23 dr —lL{ —21y }——6
© s ¢ _s(s+2)4

0

t
" SCINIIWEWER  Find the Laplace transform of Jt coshtdt.

0

. ‘e 1 1| 1 1 1 2(s%+1 241
Solution L{tcosht}=1{¢]* e MLt +rety=— =+ ~ == (f +2): S2+ -
2 2 2[(s=D" (s+1) 2 (s°=1)° (s=1
t 2
L '[tcoshtdt =1L{tcosht}:s7—+12
0 $ s(s™=1)
t
" SEINIMEWLR  Find the Laplace transform of the J.te_4tsin 3t dt.

0

Solution

L{fsinsz}z—iusinm:—i( 3 ): bs
ds ds\ s> +9) (s*+9)*

6(s+4)  6(s+4)

L{te™ sin3t} = =
' [(s+4)2+9 (52 +85+25)




11.4 Properties of Laplace Transform

6(s+4)
s(s2 +8s+ 25)2

t
1 ;
L{J.te_m sin 3t dt} =—L{te ™ sin3r} =
s
0

t
" SEINI UMV Find the Laplace transform of e_4’jt sin 3t dt.
0

. . : d( 3 6
Solution L{t51n3f}=—iL{sm3t}:—_( . ): : s :
ds ds\s*+9) (s> +9)
t 1 6
L4 [rsin3ep == Litsin3} = ———
0 s (s> +9)

_4tt s 6 6
Lie J.tsm3t = > Sa— 5
0 [(s+4)"+9]" (5" +8s+25)

11.4.9 Initial Value Theorem

If L{f(¢)} = F(s) then ling f(t) = lim sF(s)
Proof We know that,
L{f' ()} = sF(s)— f(0)

SF(s)= LU (O} + £(0) = [ £7(t) e™de + £(0)
0

s§—00

11.4.10 Final Value Theorem

If L{f(t)} = F(s) then lim f(z) = lim sF(s)
[—>o00 S§—>00

Proof We know that

L{f"(0)} = sF(s)— £ (0)
SF(s)= L{f (1)} + £(0) = [ f7(t) e de + £(0)
0

§—>00

=@y + /()= lim £(2) = £(0)+ £(0) = lim £ ()

lim sF(s) = lim [r@wea+fo)=] lim [ f’(z)e‘“]dm SO = [ f/(e)de+ £(0)
5= 0 Os—) 0

11.13

lim sF(s) = lim j Fr(tedt+ £(0)= j lim[ /()¢ di+ £(0) = 0+ £(0) = f(0) = lim £ (2)
S§—>00 0 0 S—>00 =
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" Example 11.31 Verify the initial and final value theorems for e (t+ 1)2.

Solution f(O=e(t+1)* = (£ +2t+1)
F(s)= 2 + 2 + !
(s+1)7°  (s+1)? s+l
SF(s) = 2s 2s s

3T >t
(s+1)° (s+1)° s+1
lim f(f) =1
t—0

lim sF(s) = lim 5 + + =1

§—>00 §—>o0 3 2 1
(1 + 1) (1 + ]) 1 + ;
s s
Hence, the initial value theorem is verified.
lim f(1)=0
[—o0
limsF(s)=0

s—0

Hence, the final value theorem is verified.

" Example 11.32 Verify the initial and final value theorems for e (t2 + cos3t).

Solution f(t)=e"'(t* +cos3t)
2 s+1
s) = +
(s+1° (s+D*+9
2s s(s+1)
+
(s+1)° (s+D)?+9

lim f(¢)=1
t—0
o)
. . S2 S
lim sF(s) = lim +

3 2 =
S§—>o0 §—>00 1 1
BN
S S S

Hence, the initial value theorem is verified.
lim f(£) = lim(#* + cos3t)e™" =0
t—>o0 t—o0

2 1
lim s (s) = lim | ——— + S(SJ; ) =0
s—90 s=0| (s+1) (S+1) +9

sF(s)=

Hence, the final value theorem is verified.

"m Find the initial and final values of the function whose Laplace transform is

2s+1
s3+6s2+11s+6.

F(s)=
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: 2s+1
Solution F(s)=— j+
s +6s +11ls+6
2+ 1
2s? LY
£(0) = lim sF(s) = lim ———= ">~ Jim—% 5
s—>e0 5200 ” +65°+11s+6 S—>°°1+§+£+£
N s2 s3
257+

0

f(e0) =1lim sF(s) =lim =
$=0 52057 + 65> +11s+6

+
" SEII MY  Find the final value of the function whose Laplace transform is I(s) = ; +63) :
S(s
Solution I(s) = s+6
s(s+3)

s+6
I(e) =limsI(s) =1
( ) s]—r;%s (S) xl—I}é s+3

XX LAPLACE TRANSFORM OF PERIODIC FUNCTIONS

A function f{¥) is said to be periodic if there exists a constant 7(7 > 0) such that f(¢+7)= f(¢), for all
values of z.

=2

f@+2D)=f@t+T+T)=f@+T)= f(1)

In general, f(t+nT)= f(¢) for all ¢, where n is an integer (positive or negative) and 7 is the period of the
function.
If () is a piecewise continuous periodic function with period 7 then

T
LU (0} = —— [ f(nedr
l-e 0
oo T )
Proof Lif )= [ f()edt=[ f(t)e " de+ [ f(t)e dr
0 0 T

In the second integral, putting ¢ = x+ 7, dt = dx
When t=T, x=0

t—>o00, X—oo

T oo
Lif(t);= J.f(t)e"“’ dt + j. Flx+T)e ™) gy
0 0

f(He ™ di+e ™ T f(x)e™ dx
0

f(He " dt+ e_TS]f F(He™ dt
0

Il
O N O — Ny O N

f(He 'di+e BL{f(1)}
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T
(= )L{f (0} = [ 1)
0

1
| )

"m Find the Laplace transfo

f(t)
4

Lif(0)}=

A

e dt

T
— [ f(ve™" dr
0

rm of the waveform shown in Fig. 11.7.

2T 3T

Fig. 11.7

Solution The function £{7) is a periodic function with period 7.

At
f(t)_F
1

l1-e

1

L{f(0)} =

1-e ™

1

l_e—TS T

A

Ts

0<r<t

f(He™ dt

T
]
0
T
J%e_” dt
° T
éjte_St dt

0

B T(1-e ™) |

A

B T(l—e ™)

A

_ - Ts

B T(1-e ™) |

A

Ts?

ﬂ

Ae—TS

s(l—e ™)

" SEINI UMW Find the Laplace transform of the waveform shown in Fig. 11.8.
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Solution The function £{7) is a periodic function with period 2.

f(H=t 0<t<l

=0 1<¢t<?2
|2
L{f (0} =——[ f(e™ di
l—e ™
S P.I[te“"’ dt+j.0~e_”dt}
e K 1
~ 1 Fe—st . e :|1
l1—e % | s 52 0
1 e’ e’ 1
B —e>|-s ¢ s_z}
= ;(1 —et—se™)
s*(1—e )

" SENICREEYN  Find the Laplace transform of the waveform shown in Fig. 11.9.

Y
~

0 a 2a 3a 4a

Fig. 11.9

Solution The function £{7) is a periodic function with period 2a.

t

f({t)=— O<t<a
a
=l(2a—t) a<t<2a
a
1 2a
L0}y =———[ f(ye™ di
1-e 0

a 2a
_ 1 —st 1 —st
- {j e dt+:[;(2a—t)e dt]

a 2a
efst efst efst efst
t———| + (Qa-t)+ >
—S S - S
a

|
IS
~
i
|
m_‘
b
8
~
~ N\ ——t Ql“
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—2as

—2¢ “ +1+e
as’(1—e %)
(—e™ )2
as’(1—e ™ )(1+e™%)
l—e®

as’*(1+e )

" SETI UM Find the Laplace transform of the waveform shown in Fig. 11.10.
£(1)

A

1

Fig. 11.10
Solution The function £(7) is periodic with period with period 2a.
ft) =1 0<t<a
=-1 a<t<2a
1
l1—e

1 a 2a
- [j e di+ [ e () dtjl
i )

0

1 —st a —st 2a
_ e n e
1— e—2as - S
0 a

_ (1 _ efas )2
s(1+e )1 —-e™)

Lif(0)}=

2as

2a
[ fe ar
0




11.5 Laplace Transform of Periodic Functions

Solution The function £{7) is known as a hal
f(t)=asinwt

=0

The function f{¥) is a periodic function.

2

[0

Lif(r)} = ;(
1—e

Y

z 2z 3z
2 2] 2]
Fig. 11.11

. . . . . 2r
f-sine wave rectifier function with period —.
w

T
O<t<—
w

T 21
—<t<—
0] 0}

2n

] T f(t)e™ dt
S0

2n

[0}
asinwt e *'dt + J 0-e* dt

S —g 3

1
[0
T
[0

-e "' (—ssinwt — wcos a)t):|
0

1
S s
l—e @
a
I
I-e @
a
- 2rs

1 _ms
. e ?(w)y+w
s*+ ?

11.19
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;M
aw|l+e @
1

-7 ) st + o
l+e @ ||1-e @

_ am 1
- ETY 5%+ @?
l—e®
" SEINICREWON  Find the Laplace transform of
1) =1 0<t<?2
if ()= ft+2).

Solution The function £{7) is a periodic function with period 2.

—st

L0} =

" EINICHUWEN  Find the Laplace transform of

f(t)=¢' 0<t<2rm
if f()= f(t+2n).
Solution The function £{7) is a periodic function with period 2 7.
LYW= J oY
1 21

= J. e Ve dt

—27s
l1-e 0

1 2
_ (1—s)t
o l_e—2ns J.e dt

2
B 1 JRUERY T
1— e—27rs 1—s .
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B 1 e(l—s)27r 1
e | -5 I-s

e(l—S)zﬂ' _ 1

(1-e?™)1-5)

" SEINACRMWYR  Find the Laplace transform of the function shown in Fig. 11.12.

T 2T 3T 4T
Fig. 11.12

Solution The function f{¢) can be represented in terms of Heaviside unit step function.
f@O=[u(t—T)—u(t—2T)]+2[u(t —2T) —u(t = 3T) +3[u(t = 3T) —u(t —41t)] +...o
= u(t—T)+u(t —2T) +u(t —3T)+...o0
LUF(6)y = Lt = T)+ u(t — 2T) + u(t —3T) +...)

1 _ 1 _ 1 _
=—e ey _eB

B s(l—e ™)

XA wAverorm sYNTHESIS

Any waveform can be constructed with unit step, unit ramp and unit impulse f(t)
functions, etc. We know the Laplace transforms of these special functions. A
Hence, we can find the Laplace transform of any function in terms of Laplace
transform of these functions.

There is another way of synthesising the waveforms. Any function can
be expressed in terms of a gate function. The gate function is shown in
Fig. 11.13. 0 T g
This function can be expressed in terms of unit-step functions.

f(t)=Au(t)— Au(t-T) Fig.11.13 Gate function
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" SEINICHMRER  Find the Laplace transform of the unit-doublet function.

Solution The unit-doublet function ¢”(¢) is shown in Fig. 11.14.

d
o'(t)= v o(1)

L{S(t)} = L{% 6(t)} = sL{8(H)} = s(1) = s

Fig. 11.14

" Example MWV Find the Laplace transform of a rectangular pulse shown in Fig. 11.15.
£(1)

A

0 T

Fig. 11.15

Solution The rectangular pulse can be constructed from two functions as shown in Fig. 11.16. This function
is known as gate function.

h (1) 20

A
A

1 u(t)

0 —u(t-T)
(a) (b)
Fig.11.16

f@O=HO+ o) =u®)—u(t=T)

F(s) = Liu(t)} - L{u(t = T)} = é— ée-“ = %(1 —e ™)

" SEINICWEWCW  Find the Laplace transform of a sawtooth waveform shown in Fig. 11.17.

f(t)
A

Fig. 11.17



Solution

11.6 Waveform Synthesis

The sawtooth waveform can be constructed from three functions as shown in Fig. 11.18.
fi (1)

Al :
0 T ! of T t 0 T t
A ________
_ér(t_'r) -A U(t—T)
(a) (b) (c)
Fig. 11.18
A A
f(f)=fl(t)+f2(f)+f3(f):;F(t)—;r(t—T)—Au(f—T)
A A A Al 5 A _g,
F(s)=Z=L{r(t)} - = Lir(t-T)} — AL{u(t - T)} = — -2 — T -2
() pe {r(1)} . {r(t-T)} {u(t-T)} 72 TS26’ ¢

11.23

Fig. 11.19
Solution The triangular waveform can be constructed from three ramp functions as shown in Fig. 11.20.
f(t) f3(1)
A f(t) A
2o A -
0 > 1 0 T > 0 T
2
4 T
‘T’Q*E)
(a) (b) (©
Fig. 11.20

f(r)=f1<t)+fz(t)+ﬁ<r)=§r(r)—%r(¢—§)+%r(¢—n

2 4 2 2 s ‘
F(S)z?L{’”(t)}_?L{”(t——)}+?l,{r(t—T)}=TS—2—F6 24— "
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" SEIICRENYE  Find the Laplace transform of a trapezoidal pulse shown in Fig. 11.21.

T ! \
! | ; > t

0 a 2a 3a 4a

Fig. 11.21

Solution The trapezoidal waveform can be constructed from four ramp functions as shown in Fig.11.22.

fi(1)
f(t)
A ;_ r(t) 2}\

0 a
> t
0
1
—Er(t—a)
(a) (b)
f3(t)
A fa(t)
A
%r(t—4a)
> 1
0 3a
-1 r(t-3a) 0 4a >t
a
() (d)
Fig. 11.22

f(t)=ﬁ(t)+fz(t)+f3(t)+f4(t)=ér(t)—ér(t—a)—ér(t—%ﬂér(t—4a)

1 1 1 1 1111 11 11
F(s)=—L{r()}-—L{r(t—a)} —— L{r(t =3a)} + = Lir(t —4a)} = = ——— e “ ———e " +——e ™
a a a a as as as as

1 _ Ras -
:—2(1—6 as_e 3as+e 4a5)

as
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" SEI I CHEWEW  Find the Laplace transform of a sinusoidal waveform shown in Fig. 11.23.
f(t)

A

Y [ Err—

o
N~

Fig. 11.23

Solution The waveform can be constructed from two functions as shown in Fig. 11.24.
£, (1) f(1)
aA

(a) (b)

Fig. 11.24
1) = [i(t)+ f>(t) = Asin ot u(t)+ Asin ot t—Z u t—Z
VORNIORIAO (1) ) G
where wzz—ﬂ
T
Ts Ts
T T A A > Aw —
F(s):AL{sina)tu(t)}+ALJsincot(t——)u(t——)}: I T
[ 2 2 K ) R )| sT+w

" SETII UMW Find the Laplace transform of the waveform shown in Fig. 11.25.
f(1)

A

2 ______

Fig. 11.25
Solution The function f(¢) can be expressed as sum of four step functions.

F(t) = u(t)+ut =) —u(t —2) —u(t - 3)
1 1, 1

F(s)= L{u®)}+ L{u(t =)} - L{u(t-2)} - L{u(t-3)} = §+ ;e*S e —;e*“ = %(1 te e —e*3S)
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" SEINI UMV Determine the Laplace transform of the waveform shown in Fig. 11.26.

£(1)
A
ol ..
1 ______ 1
0 1 > 3 =1
Fig. 11.26
Solution The function f(#)can be expressed as sum of four functions as shown in Fig. 11.27.
fi(t)
A
r(t) f(t)
A
0 >t 0 1 !
r(t-1)
(@) (b)
f5(1) fa(t)
\ A
| ez ‘
. 0 3 g
0 2 t
B B -
—2u(t-3)
(©) (d)
Fig. 11.27
SO = O+ L)+ {0+ falt) =r(0) +r(t = 1) +ult —2) = 2u(t = 3)
F(s)= L{r(O)Y+ L{r(t =D} + L{u(t = 2)} = 2L{u(t - 3)} = L2+ ize‘s Lo 2
N S N S

" SEII UMY Find the Laplace transform of the waveform shown in Fig. 11.28.
f(t)

A
[-) SR




11.6 Waveform Synthesis 11.27

Solution The given parabolic waveform can be constructed from three functions as shown in Fig.11.29.
fi(1)
A 2t k(1) f3(1)

(a) (b) (c)

Fig. 11.29
F(f) = filt) + fo(0)+ fs(t) = 262u(t) —167(t — 2) — 2(t — 4)* u(t — 4)
F(s)=2L{t*u(t)} =16 L{r(t — 2)} — 2L{(t —4)* u(t — 4)} = 233 - 16i2 e — 2%&? = i}(l —e ) —ge‘“
S S S S S

" SEINI MUY  Find the Laplace transform of the waveform as shown in Fig. 11.30.
f(1)

A

3F------

ol L.

Fig. 11.30

Solution The given waveform can be constructed from four functions as shown in Fig. 11.31.
fi(t) f(t)

A A
3r(t)
0 i =t
> t
0 3r(t-1)
@) (b)
Fig. 11.31
f5(t) fa(t)
A A
0 1 ! 0 2
_1 ________ — 2 _________________
—u(t-1) —2u(t-2)

Fig. 11.32
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SO = [+ O+ f[5(0+ fa(t) =3r(t) = 3r(t =D —u(t = 1) = 2u(t - 2)
303 1 2

F(s) = 3L{r(t)} = 3L{r(t — 1)} — L{u(t — )}~ 2L{u(t - 2)} = % — e " ——e " == >
S S N S

" SEINICREREN  Find the Laplace transform of the periodic waveform shown in Fig. 11.33.
f(t)

A

1

Fig. 11.33

Solution The function f(¢) is a periodic function with period 2.

The function fi(¢) can be constructed from three functions by waveform synthesis.
Sit)=u(t) = 2u(t =) +u(t-2)

Fis) = Liu(t)} = 2L{u(t— 1)} + Liu(t - 2)} =~ — 2es 4 Lo
N S S

The Laplace transform of periodic function f(7) is

L{f(D)} = Fi(s)

)
-

_ =€y
s(l1—e *)1+e?)
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" Example 11.54 Find the Laplace transform of the waveform shown in Fig. 11.34.
£(1)
A

A __________________________

0 T 2T 3T

Fig. 11.34

Solution The function f(¢) is a periodic function with period T.
The function f;(¢) can be constructed from three functions by waveform synthesis.

filD) = ?r(t)—%r(t—T) — Au(t-T)

A A A Al 5 A _g
E(S):?L{l"(t)}—?L{V(t—T)}—AL{u(f—T)}:F—Fs—ze —;e

The Laplace transform of the periodic function f(¢)is

1 1 A A 4 A TS)
L{f(t)} = F(s)= = LT,
U0} =5 Fi(s) 1_e—Ts(rs2 Te 2

" SEINICMETLW  Find the Laplace transform of periodic waveform shown in Fig. 11.35.
£(1)

A

4 /N

Fig. 11.35
Solution The function f(¢) is a periodic function with period T.
The function f;(#) can be constructed from two functions by waveform synthesis.

fi(t) = Asinwtu(t)+ Asin wt(t—%)u(t—%)

Y

o
N~
\'

2

11.29

T T 0] 0 = Aw =L
E(s):AL{sina)tu(t)}+AL{sinwt(t—E)u(t——)}=A + 4 e 2 = (1+e 2]

S
The Laplace transform of the periodic function f(¢) is

LU0} =+ L_FRs)

1 A —
=T s 2 (D2 Ite 2
- s“"+w
_Is
Aw 1+e 2
s+ I s
l—e 2 ||1+e 2
Ao 1
Fra? D
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EERA| INVERSE LAPLACE TRANSFORM

If L{f(¢)} = F(s)then f(t) is called inverse Laplace transform of F'(s) and symbolically written as

f(t)=L"{F(s)}

where L' is called the inverse Laplace transform operator.

Inverse Laplace transform can be found by the following methods:

(i) Standard results
(i1) Partial fraction expansion
(iii) Convolution theorem

11.7.1 Standard Results

Inverse Laplace transforms of some simple functions can be found by standard results and properties of
Laplace transform.

2
~3s+4
" SEINI U Find the inverse Laplace transform of %

2 S

s =3s+4 1 3 4

Solution F(s)=—F—=-—5+—
S s s Ky

LYF(s)}=1-3t+2¢

+
" SEICHMMYN  Find the inverse Laplace transform of 3 49(
+

2
N

35s+4 3s 4
= +

Solution F(s)= -
s +9  §°49 s749

4 .
L{F(s)} = 3cos3t + §s1n3t

4s+15
" SEIN AWM  Find the inverse Laplace transform of 7];2 25.
2 —

solution F(s) = 4s2+15 __A4sHl5 1 s +E 1
16s° —25 > 25) 4 52 25 16 » 25
16 s" —— §T=— §T——
16 16 16

1
L*l{F(s)}=—cosh§t+ismh§z
4774 4 4

2s+2
" SEINI UL N  Find the inverse Laplace transform of ZS—
s°+2s+10

2542 2(s+1)
s +25+10  (s+1)?+9

Solution F(s)=

LYF(s)=2e7'L7 {L} =2¢ ' cos3t

s +9
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3s+7
" EINI UMM Find the inverse Laplace transform of ZS—

§?—2s—3

solution F(s) = 23S+7 :3(s—1)2+1023 (s—21) +10 12
s°=2s-3 (s-1)"—-4 (s—h)" -4 (s—D)" -4

[um—

=3¢’ cosh 2t + 5¢’ sinh 2¢

LY{F(s)}=3e'L" {%}+ 10’ {

st —4

11.7.2 Partial Fraction Expansion

) where P(s) and Q(s) are polynomials in s. For performing

Any function F(s) can be written as

partial fraction expansion, the degree of P(s) must be less than the degree of O(s). If not, P(s)must be
divided by Q(s), so that the degree of P(s)becomes less than that of Q(s). Assuming that the degree of
P(s) is less than that Q(s), four possible cases arise depending upon the factors of Q(s).

Case I Factors are linear and distinct,

P
O
(s+a)(s+b)
By partial-fraction expansion,
A B
F(s)= +
s+a s+b
Case Il Factors are linear and repeated,
P
Fs)=— 20
(s+a)(s+b)"
By partial-fraction expansion,
B B B
F(s)= I —"
sta s+b (s+b) (s+b)"

Case Il Factors are quadratic and distinct,
P(s)
(52 +as+ b)(s2 +cs+d)

F(s)=

By partial-fraction expansion,
As+ B N Cs+D

F(s)=
s’ +as+b s’ +cs+d

Case IV  Factors are quadratic are repeated,

P(s)
F(s) =
) (s* +as+b)(s* +es+d)"

By partial-fraction expansion,
As+ B + Cis+ Dy + Cys+ D, . C,s+D,

F(s) = T b
sPtas+b sS+ces+d  (sP+es+d)? (s* +es+d)"
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+2
" DEIN I CRENYW  Find the inverse Laplace transform of il

s(s+1)s+3)’

Solution F(s)= _s¥2
s(s+D)(s+3)
By partial-fraction expansion,
A B C

F(s)=—+—+——
s s+1 s+3

5 2
Amsiy) = s¥2 |2
=0 (s+1)(s+3) =0 3
s+2
B=(s+1)F(s - -
(s+1) ()|x:—1 s(s+3)|__,
s+2
C=(s+3)F(s - o
(s+3)F(s)| __, sts+D]_, 6

21 1 1 1 1

3
L_I{F(s)}sz_l 1 _lL—l 1 _lL—l b =%——e
3 s] 2 s+1] 6 s+3

+2
" DCINICHENYR  Find the inverse Laplace transform of SR

s*(s+3)
. s+2
Solution F(s)=———
s(s+3)
By partial-fraction expansion,
F(S) — é + £ + L

s s> s+3
s+2=As(s+3)+ B(s+3)+Cs*
= As®> +3As+ Bs+3B+Cs>
=(A+C)s* +(34+ B)s+3B
Comparing coefficients of s*,s' and s°,
A+C=0
34+ B =1

3B=2
Solving these equations,

L' {F(s)}=

O~ V|~ o|—

3 s
! 1 +2L_l 1 _lL—‘ L
S 3 52 9 s+3

i

1
—+
9

2
3

9

I _
e3t



11.7 Inverse Laplace Transform 11.33

2
—15s—11
" SEICRMNERN  Find the inverse Laplace transform of S T

(s+1)(s-2)°

557 —15s5-11

Solution §) =
(s+1)(s—2)*

By partial-fraction expansion,
A B C
+ +

s+l s=2 (s=2)°

552 =155 —11= A(s —2)* + B(s +1)(s —2)+ C(s +1)
= A(s® —4s+4)+ B(s> —s—2)+C(s+1)
= As* —4As+4A+ Bs* —Bs—2B+Cs+c
=(A+B)s* —(44+B—-C)s+(44—2B+C)

F(s)=

Comparing coefficients of s*, s' and s°,

A+B=5
44+B-C=15
44-2B+C=-11
Solving these equations,
A=1
B=4
C=-7
1 4 7
s+l+s—2_(s—2)2

1 1 1
LYF(sy=L" {—} +4L7" { }— 7L = e +4e* —Tte”
s+1 s—2 (s—2)*

+1
" SEICRMNTYN  Find the inverse Laplace transform of 5s

F(s)=

(s+D)(s>+2)
Solution F(s)= L
(s+1)s"+2)
By partial-fraction expansion,
F(S) _ i + Bs+C
s+l 57 +2

3s+1=A(s* +2)+(Bs+C)(s+1)
= As> +2A4+ Bs* + Bs+Cs+C
=(4+B)s> +(B+C)s+(24+C)
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. ) 2 1 0
Comparing coefficients of s°,s" and s°,

A+B=0

B+C=3

. . 24+C =1

Solving these equations,
A=—g,B=%,C=z
3 3 3
2 1 2 s 7 1
F S)=——-" + —- + —-
() 3 5+41 3 242 3 §2+2

)
. 2 [ 1 2 s 7 [ 1 2 2 7
FHEG) == —— 2 7 —}+—L1 }z——e"+—c0s 2t + ——sin/2¢
)} =3 {s+1} 30 |2 +2) 30 [sf+2 3 3 32

" SEINI UMW  Find the inverse Laplace transform of >

(s> +1)(s> +4)

2 2
Solution F(s) = s _ S| sT+4-s" -1 =l[ s s J
(P2 +4) 3| (PP +4)] 3L+l P44

_ 1 _ s _ s 1
L I{F(s)}=§|:L l{m}_L l{sz +4}:|= g[cosz‘—COSZf]

11.7.3 Convolution Theorem

If LHF ()} = fi(r) and L{F(9)} = fo(1) then [7HF(5) Fy(9)} = [ fi(u) fa(t ~w)du
0

where [ fi(u) fa(t—u)du= £i(6)* f(£)
0

Proof F(s)- Fa(s) = LUAO} LU0} = [ fiwydu-[ e foydv = [ [e) fi(w) fo(v)dudv
0 00

0

= T.ﬁ(z:)ﬁe‘*‘“‘*"’ﬁ(v)dv]du
0

0

Putting u+v=t¢, dv=dt

When v=0, t=u
V—oe, f—o0

oo

F(s) F(s)= | / (u)[je‘-"’fz(z - u)dr}du = [ [e™ fiw) fo(t —u)dt du
0 00

u

u
The region of integration is bounded by the lines u=0and u=+¢. 1}
To change the order of integration, draw a vertical strip which starts
from line ¥ =0 and terminates on the line u =¢. Hence, u varies
from O to ¢ and ¢ varies from 0 to oo. 0//\ _____
oo t t el
F(s) - F(s)= JAe"“"J-ﬁ(u)fg(t—u)du dt = L{Jfl(u)fz(t—u)du} N REA
0 0 o ) e E— > t



11.7 Inverse Laplace Transform 11.35

Hence, L_]{Fl (8)-Fr(s)} = _[fi(u)fz(r—u)du

. . . . . 0
Note Convolution operation is commutative, i.e.,

L“ﬁhdﬁ@—@&%zl{fﬁ@—@ﬁumm}
0 0

" SEINI UMW Find the inverse Laplace transform of N S— .
(s+2)(s—1)

1
Solution F(s)= G126-D
1 1
Let E (S‘) = S+—2 F;)_(S) = :
fiy=e™ L) =¢

By convolution theorem,

t ‘ S3u | ‘
LYF(s)} = je_z”e'_“du = e’J.e_3"du =e [e :l = %(l—e_y)

0 0 -3 0
" SEICRMNYR  Find the inverse Laplace transform of ﬁ
sT(s+
s“(s+1)
Let F§)=—— B()="
(s+1)° s

fily=te” falt) =1
By convolution theorem,
t

t
L {F(s)} = J.ue_" (t—u)du= J.(ut =t Ye ! du= I:(ut - uz)(—e_") —(t-2u)(e™)+ (—2)(—6_"):|;
0 0

Site "t $2¢7 £1—2

" SEICRMNY N Find the inverse Laplace transform of

|
" (5=2)(s+2)?

(5=2)(s+2)

Solution F(s)

1 1
Lt = —
e RO=rs RO=15

fi()y=te™ fo(t)=e*

By convolution theorem,

t t t ~4u -4 -4t 4t
_ _ —t 1

L_]{F(S)}=_[ue 2u Q201 “)Jdu:eZtJ.ue—4u du = &' e ¢ =¥ ¢ _e_+_

0 7 o -4 16 o 4 16 16

2t -2t =2t

t 1 i o
_ET e " € :_(e21_62r_4t621)
16 4 16 16
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1
" EINICRUNCEN  Find the inverse Laplace transform of

SZ(SZ +1) .
Solution F(s)= ——
<) s*(s* +1)
Let F(s)= ! F(s)—i
] s +1 ? s
Si(t) =sin ¢ fr()=t

By convolution theorem,

LYF(s)} = [sinu(t—u)du = [(t—u)(—cosu) - sinul = t—sint
0

1
" SEINICREWON  Find the inverse Laplace transform of

(s+1D(E°+1)
Solution F(s) = %
(s+1D(s” +1)
1
F(s) = Fy(s)= —
Let 1(s) ) 2(s) )
fi(t)=sint frt)y=e’

By convolution theorem,

! 4 u ! —t
LYF(s) = Jsin ue ™ dy = _[e”_’ sinudu=e™" {%(sin u—cosu)| = % [¢'(sint —cost)+1]
1 0

0

1 . 1
= —(sint—cost)+—e

2 2

XX} | soLUTION OF DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

The Laplace transform is useful in solving linear differential equations with given initial conditions by using
algebraic methods. Initial conditions are included from the very beginning of the solution.

: Llnear_ Laplace Algebraic
differential transform equation
equation q
Y
S.olution'of Inverse Solutlon.of
differential < Lol algebraic
equation aplace equation
transform
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" Example 11.71 BRI %‘FZ)/ =e7', y0)=1.

Solution Taking Laplace transform of both the sides,
1
sY(s)=y(0)+2Y(s)=——
s+3

1
sY(s)—1+2Y(s)= — [+ »(0) = 1]
s —i— 3 A
(s+2)Y(s)= ——+1="7
s+3 s+3
Y(s)=— >+
(s+2)(s+3)
By partial-fraction expansion,
B
Y(s)= +—
s+2 s+3
+4
A=(s+2)Y(s)| _, ="~ =2
s+ 3| .,
4
B=(s+3)¥(s)|__ =2 -1
=70 s+ 2 PR
2 1
Y(s)= ————
() s+2 s+3
Taking inverse Laplace transform of both the sides.
W)= 2e7 M —e
IR R N sonve v/ +y=1, y(0)=1, y(0)=0.
Solution Taking Laplace transform of both the sides,
, 1
[V () = s7(0) =y (O] + ¥ () =
1 ,
s2Y(s)—s+Y(s)= = [ »(0)=1,"(0)=0]
3
(S +)Y(s5) == +s=2 1
s s
s°+1 s 1 s sz+l—s2_ s +i_ 1

YS: = = =
() SS(PHD sS4+ sASPHD ST+ SR HD ST+ st 5P+

Taking inverse Laplace transform of both the sides,
y(t)=cost+1t—sint

|NEEIEEERER sonve v+ v =17 +21, y(0) =4, y/(0) = 2.

Solution Taking Laplace transform of both sides,

[5Y () - 59(0) = y'(0) | + [ (5) - »(0)] = S% 332
s*Y(s)—4s+2+5Y(s)—4= %+32
N S
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2(1+5)

2 2
(52 +5) Y(s)= S+ +45+2 =2 +45+2
s s s
2(1+ 4 2 2 4 2 2 2 2 2
Y(s)= 3(2 2 + 2S t . Tt att T T T At T
sS(s“+s) sT+s sT+s 50 s+l os s+l 7 s s+]

Taking inverse Laplace transform of both the sides,
3
t
y(t): ?+2+2€_t

" SEINJICHEWLR  Solve y” +4y =8(1), y(0)=0, y'(0) = 0.

Solution Taking Laplace transform of both the sides,
s*Y (s) = sy(0) = y'(0)+4Y(s) =1
s2Y(s)+4Y(s)=1 [* ¥(0)=0, y(0) = 0]
(s* +4) Y(s)=1

Y(s)=

s*+4

Taking inverse Laplace transform of both the sides,

1
t) = —sin2t
() 5

IEEILTEEE RN sorvey”+ 3y + 2 =18(t— 1), y(0)=0, y'(0)=0.

Solution  Taking Laplace transform of both the sides,
[S2Y(s) — sy(0) - y'(O)] +3[sY(s) = p(0)]+ 2¥ (s) = *
s*Y(s)+3sY(s)+2Y(s)=¢* [- »(0)=0, y’(0)=0]
(s +3s+2) Y(s)=¢"*

¥(s)=— < e e—S(L_ ! )
s“+3s+2 (s+D(s+2) s+1 s+2
Taking inverse Laplace transform of both the sides,
y@&)=e " Du-1)-e2 Dy -1)

" Example 11.76 Solve y"+4y=u(t-2), y(0)=0, y'(0)=1.

Solution Taking Laplace transform of both the sides,

-2
P

[s2 Y(s)—sy(0)— y'(O)] +4Y(s)=

-2
P

s2Y(s)—1+4Y(s)= [+ y(0)=0, y’(0)=1]

=25

(s> +4)Y(s) =<

-2s 25
e 1 e 1 s 1
Y(8)=— T (—— > )+ >
s(s“+4) s°+4 4 \s s°+4) s +4

Taking inverse Laplace transform of both the sides,

+1

1 1 1
ty=—u(t—2)——cos2(t —2)u(t—2)+—sin 2t
(1) 4u( ) 250 (t—2)u(t-2) >
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IEEXD| soLuTION OF A SYSTEM OF SIMULTANEOUS DIFFERENTIAL EQUATIONS

The Laplace transform can also be used to solve two or more simultaneous differential equations. The Laplace
transform method transforms the differential equations into algebraic equations.

" Example 11.77 BRIEE %+y =sint.

d
—y+x:cost

dt
where x(0) = 0 and y(0) = 2.

Solution Taking Laplace transform of both the equations,

sX(s)—x(0)+Y(s)= 21
s +1
sX(s)+Y(s)= 21 ..(1)
s +1
and SY(5) = W(0)+ X(s) = =
55+
SY(s)+ X(s) = ——+2
s +1
2
SY(5)+ X(s) = w .. (i)
sT+1
Multiplying Eq. (i) by s,
S X(5)+sY(s5)= ... (iif)
sT+1
Subtracting Eq. (iii) from Eq. (ii),
(s* =) X(s)=-2
2 .
X(s)=-— ...(1v)
s°—1
Substituting X(s) in Eq. (i),
Y(s) = +2—2 (V)

2 2
s°+1 s°—1
Taking inverse Laplace transform of Egs (iv) and (v),

x(t) = —2sinht

and y(t)=sint+ 2cosht
dx ‘

" Example 11.78 g% — Ty=e
—y+ x=sint
dt

where x(0) =1 and y(0) = 0.
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Solution Taking Laplace transform of both the equations,

sX(s)—)c(O)—Y(S)ZL
s—1
1 S .
sX(s)=Y(s)=—+1=— ...(1)
s—1 s—1
and sY(5)—y(0)+ X(s)= 21
s +1
sY(s)+ X(s)= 21 ...(11)
s +1
Multiplying Eq. (i) by s,
2
SZX(S)_SY(S):S_I (111)
§—
Adding Egs (ii) and (iii),
5 1 52
+1)X(s)= —
(7 +DX() = 5+
1 52
X(s)= +
) (2+D?  (s=D(s* +1)
—1+l(l+s+1J (iv)
(52+1)2 2 s-1 §2+1 s*+1
Substituting X(s) in Eq. (i),
3
K S S
Y{(s)=s5X(s)— = - -
(5) () -1 (241 (s=)(s*+1) s-—1
Ry K
)=~ 2
(s°+1D)" (s—1)(s"+1)
S 1 1 S 1
_ __ _ + Y
(s> +1)? 2(s—1 st 41 s2+1) v

Taking the inverse Laplace transform of Egs. (iv) and (v),
1 . 1, ) 1, )
x(t)= E(s1nt—tcost)+5(e +cost+sint) = E(e +cost+2sint —¢cost)

1 1 1
and y(t) = Etsint—z(et —cost+sint) = E(z‘sint—e’ +cost—sint)

|| Example 11.79 NWE %+5x—2y=t
dy
—+2x+y=0
dr Y

where x(0) =0 and y(0)=0.



11.9 Solution of a System of Simultaneous Differential Equations

Solution Taking Laplace transform of both the equations,

5 X(5) = x(0)+5 X (5) = 2Y(s) = iz

S
(5+5) X(5)=2¥(5) = —
A)

and sY(s)—y(0)+2X(s)+Y(s)=0
2X(s)+(s+1)Y(s)=0

1
Multiplying Eq. (i) by E(S +1),

%(H 5)(s+ 1) X(s)—(s+ DY (s) = %21

Adding Egs (ii) and (iii),

s+1
X =5—3
s7(s+3)
Substituting X(s) in Eq. (ii),
2
Y(5)=————
52 (s+ 3)2
+1
Now, X(s)=— - 2
s“(s+3)

By partial-fraction expansion,

X®:£+%+(j+ D2
S s s+3  (s+3)

s+1=As(s+3)* +B(s+3)* +C(s+3)s* + Ds*

= As(s” +65+9)+ B(s* +65+9)+ C(s* +3s° ) + Ds*
= As® +6A4s> +9A4s+ Bs> +6Bs+ 9B +Cs> +3Cs* + Ds*
=(A+C)s’ +(6A+ B+3C+D)s* +(94+6B)s+9B

Comparing coefficients of s°,s%,s' and s°,
A+C=0
64A+B+3C+D=0
94+6B =1
9B =1

Solving these equations,

11.41

...()

...(ii)

...(iii)

(iv)

(V)

...(vi)
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1 11 1 1 2 1
X@$§)=—=—"+———-——-
27 s 9 2 27 s+3 9 (s+3)2

Taking inverse Laplace transform of both the sides,

1 1
xX(t)=—+—-t——e
o 27 9 27 9
Similarly,

—+—
s s+3 (s+3) 27 s 9 S 27 s+3 9 (s+3)

-2 A B C D 412141 2 1
Y()_ _S 2

s (s + 3)
Taking inverse Laplace transform of both the sides,
2,4 2
=———t——e " ——te
Y= 7757 T

IEEBTY || THE TRANSFORMED CIRCUIT

Voltage—current relationships of network elements can also be represented in the frequency domain.

1. Resistor For the resistor, the v—i relationship in time domain is

v()=Ri(t)
The corresponding frequency—domain relation are given as
V (s)=RI(s)
The transformed network is shown in Fig 11.37.
i(f) I(s)
O > O >
+ +
v(l) R V(s) R
o o

Fig. 11.37 Resistor
2. Inductor For the inductor, the v—i relationships in time domain are

di
t L—
wWi) = %

t

i(t) = j w(¢) dt +i(0)
Ly
The corresponding frequency-domain relation are given as

Vis)= Ls I(s)—Li(0)

1) =V () + 12
The transformed network is shown in Fig 1 1.38.

i(t) 1(s) I(s)

+ + 2 g
i) Ls

v(1) % V(s) V(s) % Ls CD i(g)

Li(0)
o—— o o

Fig. 11.38 Inductor
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For capacitor, the v—i relationships in time domain are

3. Capacitor
W(t) = é { i(t) dt + v(0)

dv
(1) =C—
i(1) &

The corresponding frequency—domain relations are given as
1 0
V)= - 1(5)+ X0
Cs s

I(s) = CsV(s)— Cw(0)

The transformed network is shown in Fig 11.39.
i) I(s) I(s)
o—>— Oo—>
+ + +
1
Cs
v(1) ~c V(s) V(s) —— é G Cv(0)
v(0)
5
o—— o o
Fig. 11.39 Capacitor

JEREN || RESISTOR-INDUCTOR CIRCUIT

Consider a series RL circuit as shown in Fig. 11.40. The switch is closed at time 7 = 0.
R

Ko D
(D 3.

Fig. 11.40 RL circuit

For ¢ > 0, the transformed network is shown in Fig. 11.41.
Applying KVL to the mesh, R
% AaaY
——RI(s)—LsI(s)=0
s
vV ?V = /D g Ls
y I(s)
L
I(s)=————
(s) ( RJ
s|s+—
L Fig. 11.41 Transformed network
By partial-fraction expansion,
A B
I(s)=—+
s R
S+—
L

A:S](S) sz():SX(iR)
S| S+ —
L s=0
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v 5)
1(s) =§+ RR

s+—
L
Taking the inverse Laplace transform,
R
N
(t)y=———e L
O=%->

R
:K{l—e Lt} fort>0
R

" SENACRURIN /1 the network of Fig. 11.42, the switch is moved from the position 1 to 2 at t = 0,

steady-state condition having been established in the position 1. Determine i (t) for t > 0.

et

10V —/—
1Q D
i(1)

000
T

Fig. 11.42
Solution At =0, the network is shown in Fig 11.43. At ¢ = 0, the network has attained steady-state
condition. Hence, the inductor acts as a short circuit. 10
10 NV

i(07) = 1= 10 A
Since the current through the inductor cannot change instantaneously, 10V== i 0‘)/> I

(0 =10 A

i0m=104 Fig. 11.43
For ¢ > 0, the transformed network is shown in Fig. 11.44.
Applying KVL to the mesh for # > 0, ,\/1\/\1

—I(s)—1(s)—sl(s)+10=0

I(s)(s+2)=10 1§ /D s
10 1(s)

I(S):s+2 _|_10

Taking inverse Laplace transform,

) (t) =10e2 fort>0 Flg 11.44
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" SEINNI RSN Te nerwork of Fig. 11.45 was initially in the steady state with the switch in the
position a. At t = 0, the switch goes from a to b. Find an expression for voltage v () for t > 0.

20 a b
—VVNV—>o0)\ ©

O
+

oy - §1Q §1H v(f)

Ol

Fig. 11.45

Solution At ¢t = 07, the network is shown in Fig 11.46. At
t = 07, the network has attained steady-state condition. Hence, the ’)
i(07)

inductor of 2H acts as a short circuit. 2V—

2
(07)===1A
i07)=7

Since current through the indgctor cannot change instantaneously, Fig. 11.46
i(0H=1A
For ¢ > 0, the transformed network is shown in Fig. 11.47.
Applying KCL at the node for z > 0, 2s
; 1 % s V(s)

Vis)+2 N V(s) N V{s) _0o
2s 1 s 2 T 3

1
V(s) 1+i == .
2s s Fig. 11.47
1

2 1
VS = S = — = —
() 25+3 25+3 s+1.5
2s

Taking the inverse Laplace transform,

v(H=—e'3! fort>0

" SEINICRERYE 11 the network of Fig. 11.48, the switch is opened at t = 0. Find i(?).

100
[

36V /) ;69
| ,

0.1H i(

Fig. 11.48 () 100

Solution At =0, the network is shown in Fig. 11.49. Att=0,
the switch is closed and steady-state condition is reached. Hence, 30
the inductor acts as a short circuit. L § 6Q

36V =
ir(07)=

36 _ 36 54 i (0)
10+(3]|6) 10+2

6
(07 )=3x—2 =2 A
iL(07)=3x
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Since current through the inductor cannot change instantaneously,

(0)=2A 3
For ¢ > 0, the transformed network is shown in Fig. 11.50.
Applying KVL to the mesh for # > 0, § 5

~0.2-0.15 (s) =31 (s)—6I (s) = 0 o1
0.1/ (s)+9I(s) = 0.2 02
0.2 2 L

I(s)= =
0.1s+9 s+90

I(s)

. Fig. 11.50
Taking inverse Laplace transform,

i(f) =201 fort>0

" SEINCHERER  The network shown in Fig. 11.51 has acquired steady-state with the switch closed
for t< 0. At t = 0, the switch is opened. Obtain i (t) for t > 0.

36V — 40 ng

it

Fig. 11.51

Solution At ¢=0-, the network is shown in Fig 11.52. At ¢ = 0-, the switch is closed and the network has
acquired steady-state. Hence, the inductor acts as a
short circuit. 10Q /ff/\si\/
36 36 ir(07)
ir(07)=

= =3 A
10+(4)14) 10+2
4 36V ;49 I

i(07)=3x——=15A
4+4

Since current through the inductor cannot change

instantaneously, Fig. 11.52
(0 =15A
For ¢ > 0, the transformed network is shown in Fig. 11.53. ’\/3/\/
Applying KVL to the mesh for 7> 0,
—41(s)—41(s)-2sl(s)+3=0 2s
81 (s)+2sl(s)=3 4§
1(s)
3 1.5 3
I(s)= =
(s) 25+8 s+4 T
Taking the inverse Laplace transform, Fig. 11.53
i(t)y=1.5e™*! fort>0

" EINNICHERTR [ the network shown in Fig. 11.54, the switch is closed at t = 0, the steady-state
being reached before t = (. Determine current through inductor of 3 H.
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2Q
A

N o

1V )
(/1 (1

§QQ )
o (1)

§3H

Fig. 11.54

Solution At ¢=0-, the network is shown in Fig.
steady-state condition is reached. Hence, the inductor of 2 H acts

as a short circuit.
1
(0 )==— A
1(07) 2

L(0)=0

Since current through the inductor cannot change instantaneously,

1
l.](0+)25 A

i(07)=0

For ¢t > 0, the transformed network is shown in Fig. 11.56.

Applying KVL to Mesh 1,

1—2511(S)+1—2[[1(S)—12(5)]: 0
S

(2428 11(5)— 21> (5) = 1 + -
S

Applying KVL to Mesh 2,
=2 [L(s) = 1,(s)] = 21(s) = 3s I, (s) =0
=21 (s)+ (4+3s) I(s)=0
By Cramer’s rule,

1+l
N
0

2+2s

g(s+1)
s

11.55. At¢t=0,

O—O

Iy (OD

Fig. 11.55

20

;(s+l)

s+1 s+1

I(s)= -

4+ 3s

2+ 2s
-2

By partial-fraction expansion,

A

B
Ly(s)=—+
s

s+2

A=s Iz(s)‘szo =

B=(s+Dl(s),_, =~

T (2125)4+35)-4

S35 +75+2) 3s(s+;J(s+2) s(s+2)(s+;)

1
E(S'i'l) 1

(s+2)(s+%) . 2

l(s+l) 1

(71) T
S| s+—
3 s=-2
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1
{ *(S+1)
C= Ls+l)12(s)|sz_l =3 __2
3 3 s(s+2) 5
1
=73
Ls=1_Lt t 21
T 2s 10542 5 1
3

Taking inverse Laplace transform

: 11
f)=———
i>(1) > 106

" Example MWW 1 the network of Fig. 11.57, the switch is closed at t = 0 with the network previ-

ously unenergised. Determine currents i (t).

—t
—%e 3 fort>0

10 Q 1H
Y o—AANA—TO0

1H
100V = > §1OQ>
ii (1 i (1 10Q

2

Fig. 11.57
Solution For ¢ > 0, the transformed network is shown in Fig. 11.58.
10 s
ANN—T00
s
100 [
T D g )
ly (s) Ip (s) 10
Fig. 11.58

Applying KVL to Mesh 1,

100 —101y(s) = s11(s) =10 [11(s) = I2(s)] = 0
S

(s+20)1(s)—1015(s) = 100
s

Applying KVL to Mesh 2,
—10[12(s) = Li()] =5 I (s) =10 Ir(s) =0
=10 L1(s)+ (s +20)15(5)=0
By Cramer’s rule,

100
s
0 s+20 _100(s+20) _ 100(s+20)
s+20 —10 ‘ (s+20)° =100  s(s> +40s+300)  s(s+10)(s+30)

~10  s+20

~10 100
—(s+20)
S

Ii(s)=




11.12 Resistor-Capacitor Circuit

By partial-fraction expansion,

A B
Li{s)=—+ + ¢
s s+10 s+30
AZS]](S)IS:OZM _20
(s+10)(s+30)|_, 3
B=(s+10)y(s) [erg= 520 _ g
s(s+30) |__},
100s+20)) 5

C = (s+30)1(s)

§=—30= W §=—30 3

201 5 5 1

()=
3 s s+10 35430
Taking inverse Laplace transform,

5
(1) = ? _gpl0r _ 2 30n

Similarly,
s+20 100
s 1000
P e (U B s _ 1000 _ 1000
PUT4200 <10 ] (5+20)2-100  s(s2 +405+300)  s(s+10)(s+30)
-10  s+20
By partial-fraction expansion,
A B
I,(s)=—+ + ¢
s s+10 s+30
1 1
A= sl5(s)ls=0= LU -
(s+10)(s+30)[ _, 3
1
B = (s+10)y(5) hmro= —2 |~ 5
s(s+30)[ __,
1000 5

C = (s+30)15(s) [;-_30= 3
( M>(5) s=-30 s(s+10)| _5, 3

101 5 5 1
L(s)=—————+>
3s s+10 3s+30
Taking inverse Laplace transform,

10 5
i (1) = ?—se*“” +§e*3°f for 1> 0

11.49

EEREY | ResisTOR-CAPACITOR CIRCUIT o

Consider a series RC circuit as shown in Fig. 11.59. The switch is

closed at time 7= 0. Vv —— /)
For ¢ > 0, the transformed network is shown in Fig. 11.60. i(f)
Applying KVL to the mesh,

v

1
——RI(s)-—1(5)=0 Fig. 11.59 RC circuit
s Cs
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1 14
R+— [I(s)=—
( Cs) () s
v v 4
N s ___ R
I = = g1~ 1
R+— —
Cs Cs RC
Taking the inverse Laplace transform,
1
Vo=t -
i(t)y=—e &¢ fort>0
==

[ Example 11.85

i(t)andv (1)
1

10V —/—

Q a

—AMA—

6 F

T

b 1Q
o AM—

Y
i)

v
s

Fig. 11.60 Transformed network

In the network of Fig. 11.61, the switch is moved from a to b at t = (. Determine

Fig. 11.61

change 10V —

Solution
condition. Hence, the capacitor of 6 F acts as an open circuit.
vep(0)=10V
i(0)=0
v, (01)=0
Since voltage across the capacitor cannot
instantaneously,
Ve (0D =10V
v, :(09=0

For ¢ > 0, the transformed network is shown in 11.63.

Applying KVL to the mesh for ¢ >0,
10 1

N

1 1
—I(s)+1(s)+—1I(s)=
6s 3s

1s) = 10

) 1 _
p I(s)—[(s)—gl(s)—o

10

s
60

10

1 1

s (1
Taking the inverse Laplace transform,

i(1) = 10705

6s 3s

+—+—

fort>0

Voltage across the 3 F capacitor is given by

V(s) = 1(s) =
3s

J: 65+3 s+05

10
3s(s+0.5)

At t =07, the network is shown in Fig. 11.62. At ¢ =0, the network has attained steady-state

10
AVAVAY,
(o]
Ver (07)
i(07) 7
Fig. 11.62
1
AVAVAY; T
) — 31—5 V,(s)
1(s) l
Fig. 11.63
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By partial-fraction expansion,

A B
Vils)==+
s s+0.5
1 20
A:SVc(S)L:O :70 ==
3(s+0.5)]_, 3
10 20
B=(s+0.5)V; = =——
¢ Ve lerns 38l—os 3
201 2 1
V) =22 -2
3 s 35405
Taking the inverse Laplace transform,
20 20 _ps
V) =———e
(1) 3 3
=?(1—e‘0‘5‘) fort>0

" SETTACMERIE  The switch in the network shown in Fig. 11.64 is closed at t = 0. Determine the

voltage cross the capacitor.
>( 10Q
1

10V —/— §1OQ 2FZ= vy (f)

l

Fig. 11.64
Solution At t= 0, the capacitor is uncharged.
v(01)=0
Since the voltage across the capacitor cannot change instantaneously,
v,(01)=0 10
For ¢ > 0, the transformed network is shown in Fig. 11.65. VWV Ky
Applying KCL at the node for > 0, ; T
10_L 10 —_— V(s
ADEE s T ; 2T o
N ACIACEN l
10 10 1 XY

2s

1
28V . (s)+0.2V,(s)=—
s

105
s(25+02) s(s+0.1)

Ve(s)=

By partial-fraction expansion,

V.(s) A+ B
e\S)=—
s s+0.1
0.5 0.5
A:ch(s)|S:0: =—=5

s+0.1{_, 0.1
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B=(s+0.0V.(s)| __,, = %l _ _% _ s
s=-0.1 .
55
Vils) =2~
() s s+0.1

Taking inverse Laplace transform,
v (t)=5-5¢"" fort>0

" SENTICHEREN /1 the network of Fig. 11.66, the switch is closed for a long time and at t =0, the
switch is opened. Determine the current through the capacitor.

v(t)
i ( I (1)

t)j_OSF
TONBN % o

Fig. 11.66

Solution At ¢ =0, the network is shown in Fig. 11.67. At ¢ = 0, the switch is closed and steady-state
condition is reached. Hence, the capacitor acts as an open circuit.

v.(07)=0
v(0)
5
ve(07)
2A CD §1 Q
1Q
Fig. 11.67
Since voltage across the capacitor cannot change instantaneously, V(s)
v, (09=0 WY 5 kO
For ¢ > 0, the transformed network is shown in Fig. 11.68. 5
. 2
Applying KVL to two parazllel branches, = CD ;1
1
;11(3)"'11(3) = I (s)

Applying KCL at the node for ¢ > 0,
2 2 19+ 1a(s)
s

2 2
—Li(s)+11(s)=——11(s)
S )

2 2
—Li(s)+2L(s)=—
s s

v N

Li(s)= =—
2., s+l

N
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Taking the inverse Laplace transform,

i(t)=e" fort>0

" SETACHERILER [ the network of Fig. 11.69, the switch is moved from a to b, at t = 0. Find v(2).

b
6V —/ +
— v (t 2Q
20 1F — ()_§

Fig. 11.69

Solution At ¢=0-, the network is shown in Fig 11.70. At ¢ = 0-, steady-state condition is reached. Hence,
the capacitor acts as an open circuit.

4Q
o) A%
v )=6Xx——=2V
442 o) +
6V —/ -
Since voltage across the capacitor cannot change o v ((i ) ; 20
instantaneously,
v(0H) =2V -
Fig. 11.70
For ¢ > 0, the transformed network is shown in Fig. 11.71. 41g
Applying KCL at the node for ¢ > 0, AN v{s)

V{s)— 2

1

V(s) V(s) y
o 1 54+ > =0 2§ Ig §2
p 15

V(s)(§+s) =2 Fig. 11.71

2
V(S):—2
S+ —
3

Taking the inverse Laplace transform,

2
-=t

v(t):2e 3 fort>0

" SEINI MRV The network shown in Fig. 11.72 has acquired steady-state at t < 0 with the switch
open. The switch is closed at t = 0. Determine v (t).

WA Ao

av = §ZQ “——1F 1= v()

Fig. 11.72
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Solution At ¢ = 0, the network is shown in Fig 11.73. At 2Q
t =0, steady-state condition is reached. Hence, the capacitor of VWV
1 F acts as an open circuit. i
B ) 4V —/— 2Q § v(07)
v(0T)=4x——=2V o
2+2
Since voltage across the capacitor cannot change instantaneously,
v(0hH) =2V Fig. 11.73
For ¢ > 0, the transformed network is shown in Fig. 11.74.
2
AAYAY
L1
4 1 T ¢ 1 v(s
e+ s [, e
—3 l
Fig. 11.74
Applying KCL at the node for ¢ > 0,
4 2
Oy e "7 e
+ + =0
T
S A
2
2sV(s)+V(s)=—+2
A
2
V)= TP oe2 2 2 2
2s+1 s(2s+1) s 2s+1 s s+0.5
Taking the inverse Laplace transform,
v(t)=2-e" for £ >0

WREN || RESISTOR-INDUCTOR-CAPACITOR CIRCUIT

Consider a series RLC circuit shown in Fig. 11.75. The switch is closed at time ¢ = 0.

¥ o AN
B L
AN
:

Fig. 11.75 RLC circuit

For ¢ > 0, the transformed network is shown in Fig. 11.76.
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Applying KVL to the mesh,

K—RI(S)—LS[(S)—LI(S)=O
s Cs

R
AYAYAY
D ¥
(R+Ls+L)I(S):K I(s) L
C

n|l<
1l

S s T Cs
2
LCs™ +RCs +1 I(s) = 4 Fig. 11.76 Transformed network
Cs s
4 4 v
L L
](S) = > § = =
LCs®+RCs+1 2 R 1 (s—s)(s—s2)
Cs L LC
) > (R 1

where s, and s, are the roots of the equation s~ + 7 s+ e =0.

2
R R 1 —
si=——+, | = | —~—==-a+yo —wj =-o+
Y’ (ZL) LC 0 P

2
R R 1 >
si=——=| = | ~——=-a-\Jo —w) =-a-
Y (2L) LC 0 P
R
where o= 5L
o = 1
" JLc
and B=+o?-w}
By partial-fraction expansion, of /(s),
A B
I(s)= +
S§—85 S—85
4
A=(s=s)l(s)|_, =—=
p 91 S‘l _S2
4 Vv
B=(s=s)1(s)|_, =—E—=-—L
TS s 51 =82
14 1 1
I(s)= -
Lisi—s3)| s—s s—5
Taking the inverse Laplace transform,
. V st Syt sit Sat
i(ty=——|e" —e” |=he' +hke™
Lsy —Sz)[ }

where k, and k, are constants to be determined and s, and s, are the roots of the equation.
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Now depending upon the values of s, and s,, we have 3 cases of the response.

Case I When the roots are real and unequal, it gives an overdamped response.
R 1
— > —
2L LC
o>y
In this case, the solution is given by

(1) = (ke + ko)

or i =ke" +kye™ for¢t>0
Case I 'When the roots are real and equal, it gives a critically damped response.
R__T
2L JLC
o=y
In this case, the solution is given by
i()y=e"(k,+k, 1) fort>0
Case III 'When the roots are complex conjugate, it gives an underdamped response.
R
2L JLC
o< wy

In this case, the solution is given by
i(t)y=k e" +kye™

where S| =—-0t \/az - wg
Let Vo —o} ==} - = jay,
where Jj= J-1

and Wy =\wj—o

Hence
i(I) = e—m (kl ej(u,,r + kz e—jmdt)

Jmgt —jm,t Jmgt _ —jm,t
=e ™| (k +ky) € re + j(k — k) L
2 2

=" [(ky + k) cos gt + j(ky — ky)sinwgt ] fort>0

" SENNICHENEN 77 switch in Fig. 11.77 is opened at time t = 0. Determine the voltage v(t) for t > 0.

O
+

05H ——05F V()

000 -

ZACD }4 §O.SQ

Fig. 11.77
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Solution At ¢ =0, the network is shown in Fig. 11.78. At ¢ = 0, the network has attained steady-state
condition. Hence, the inductor acts as a short circuit and the capacitor acts as an open circuit.

o
i +
i (07)
/() | Sesa TS
' o}
0
Fig. 11.78
i,(0)=0
v(07)=0
Since current through the inductor and voltage across the capacitor cannot change instantaneously,
i,(0=0
v(0Y)=0

For ¢ > 0, the transformed network is shown in Fig. 11.79.
Applying KCL at the node for ¢ > 0,

O
10 1. *
. DS L S 5
0.5s ?CD ;0-5 éoss — ﬁ (s)
2V {(s)+ 2 V(s)+0.5sV(s)= 2
S S 5
2
= Fig. 11.79
Vis)=5—S— = $ 4

2 05542 S r4s+4 (s+2)
S

Taking inverse Laplace transform,

v(t)=4t ™ fort >0

" SEINNICWEREYR [ the network of Fig. 11.80, the switch is closed and steady-state is attained. At

t =0, switch is opened. Determine the current through the inductor.

>( 25Q

S5V ——200uF  0.5H

I
000Q

Fig. 11.80

Solution At ¢ =0, the network is shown in Fig. 11.81. At ¢ = 0, the switch is closed and steady-state
condition is attained. Hence, the inductor acts as a short circuit and the capacitor acts as an open circuit.
Current through inductor is same as the current through the resistor.
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REEPUN

ir(0)= Vs

Voltage across the capacitor is zero as it is connected in paralle
with a short.
v (00)=0
c

1 5V ——

Since voltage across the capacitor and current through the

inductor cannot change instantaneously,

Ve (0)

i (OD

Fig. 11.81

i, (0N=2A
v (01)=0 0.5s
For ¢ > 0, the transformed network is shown in Fig. 11.82. % —
Applying KVL to the mesh for ¢ > 0, 200x10°"s ‘s
T
——I(s)-0.55I(s)+1=0
200x107s Fig. 11.82
1
0.551(s) —1+5000ﬁ =0
s
1 2s
05542000 5% +10000
s
Taking inverse Laplace transform,
i(t) = 2 cos 100¢ fort>0

" EINNCHERCER 11 1he network shown in Fig. 11.83, the switch is opened at t =0. Steady-state con-

dition is achieved before t = 0. Find i(t).

0.5H
7000

Yo

1vV—

——1F ) §1 Q
ii(t)

Fig. 11.83

Solution At t = 0, the network is shown in Fig 11.84. At
t = 07, the switch is closed and steady-state condition is achieved.
Hence, the capacitor acts as an open circuit and the inductor acts as
a short circuit.

v.(0)=1V

i(0)=1A

Since current through the inductor and voltage across the

capacitor cannot change instantaneously,

1V 5

i(07)

Fig. 11.84
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v (0 =1V 05s 05
For ¢ > 0, the transformed network is shown in Fig. 11.85. s
Applying KVL to the mesh for 7 > 0, I 1
1
———1(s)—0.5s1(s)+05-1(s)=0
s s
Fig. 11.85

1 1
0.5+—=—1(s)+0.5sI(s)+1(s)
s s

I(s)|:1+l+0.5s:|= 0.5+l
S A

+2 +D+1 +1 1
I(s)= s =(s ) s

2 2 - 2 + 2
sT+2s+2 (s+D)°+1 (s+D)"+1 (s+1)"+1

Taking the inverse Laplace transform,

i(t) =e 'cost+e 'sint fort>0

" SETNTACHMMCLN 1) the network shown in Fig. 11.86, the switch is closed at t = 0. Find the currents
i,(t) and i,(t) when initial current through the inductor is zero and initial voltage on the capacitor is 4 V.

S{ oA

10V — ) 1o ) 4%19
it (1) 1H 20 4V+T1F

Fig. 11.86

Solution  For ¢ > 0, the transformed network is shown in Fig. 11.87.

;
I (S))

AYAAY

I (SD

Fig. 11.87

10
s

S

cn|4>u>|—~

Applying KVL to Mesh 1,

10
?_11(3}_(1"'5)[[1(5)_12(3)] =0

(s+2) L1 (s)—(s+ D (s5)= %
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Applying KVL to Mesh 2,
, 1 4
~(s+D)[1r(s) = [i(5)] - Io(s) —;12(5’)—; =0
1
—(S+1)]1(S)+(S+ 2+ —)[z(s) =——
s

By Cramer’s rule,
10

L
S 2
10 2s+1 4
_ﬂ S+2+l (SJ(S—FS'S—I—]—(S-FI)(S) &(S_'_l)z_(s_{_l)i
Il(S)z S S _ _ S

s+2 _(Hli (54 2)(5 +2S+1] (5417 (+2)(s+1) sty

—(s+1) s+2+—
S

10 4
S—Z(S'Fl)—;

B 3545
(S+2)M_(S+1) s(s+1)
By partial-fraction expansion,
A B
Li(s)=—+—
s s+l
3s+5
A= sy (5) |y=o= =5
s+1 1,
3s+5
B =(s+1)I($) ;1= = =-2
s=—1
5 2
h($)=>-—
s s+1
Taking inverse Laplace transform,
i(t)=5-2¢" fort>0
Similarly,
s+2 10
s
—(s+1) - 4
()= s sl 35+l 3s43-2 3(s+1)-2_ 3 2
? s+2 —(sHD] (s4D> (41 (s+1)? s+l (s+1)?
—(s+1) s+2+ !
s
Taking inverse Laplace transform,
h(t)=3e" —2te”’ fort>0

WRTH | RESPONSE OF RL CIRCUIT TO VARIOUS FUNCTIONS

Consider a series RL circuit shown in Fig. 11.88. When the switch is closed at 1 =0, (0”)=i(0")=0.
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AN o

0 ()

Fig. 11.88 RL circuit

R

For ¢ > 0, the transformed network is shown in Fig. 11.89.
Applying KVL to the mesh,
V{s)—RI(s)—LsI(s)=0

I(s)=

o ()

Vis) _1V(s)
R+Ls L R
S+

AAAY

) éLs
I(s)

(a) When the unit step signal is applied, Fig. 11.89

V(1) = u(t)

Taking Laplace transform,

Vs)= é

I(s):%

By partial-fraction expansion,

+

v |

I(s)=

=
+
~ =

)

1

R
S+ —
Ls=0

B= (s+§)l(s)‘sz_§ =

|~

A= SI(S)|S=O =

I(s)=—

x| =

Transformed network
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Taking inverse Laplace transform,

)
i(t)=E[l—e L7 for £ >0
(b)  When unit ramp signal is applied,
v(t)=r(t)=t fort>0
Taking Laplace transform,
1
Vis)=—
2
1 1
I(s)=—
Foed)
ST s+ —
L

By partial-faction expansion,
1 A B C

1

— +—+

Lsz(s+R] s o5t 4R
"L L

l=As s+£ +B s+£ +Cs?
L L L

Putting s = 0,
1
B = E
R
Putting s = ——,
L L
C = F
Comparing coefficients of s2,
A+C=0
L
A=-C= —
L1 11 L 1
I(s)=— ——t——

Taking inverse Laplace transform,

AN ().
=—t——J[l-e ‘"] for t >0
R R?
(c) When unit impulse signal is applied,
(1) = 6(1)
Taking Laplace transform,

Vis)=1
1 1

I{(s)=———
Lo R

L
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Taking inverse Laplace transform,

i(t) = %e(f} fort>0

SETCREMEEW A7 1= 0, unit pulse voltage of unit width is applied to a series RL circuit as shown
in Fig. 11.90. Obtain an expression for i(t).

v(t) 1Q
A o AYAYAY
1 vy (1) ) § I
i(t)
0 1 ~!
Fig. 11.90
Solution
wWt) = u(t)—u(t —1)
V(s)= l e _ l1-e
s s s
For ¢ > 0, the transformed network is shown in Fig. 11.91. 1
Applying KVL to the mesh, A%
Vis)—I(s)—sl(s)=0
I(s)= ) vis) () D % s
s+1 I(s)
_1-e”
s(s+1) Fig. 11.91
1 e*S

TS5+ s(s+1)
1 1 e e

+
s s+1 5 s+1

—S

Taking inverse Laplace transform,
i) = u(t)—e u() —u(t —1)+e " Vu(t-1)
=(l—e u(t)—[1—e " Du-1) for 1> 0

" SEINI U For the network shown in Fig. 11.92, determine the current i(t) when the switch is
closed at t = 0. Assume that initial current in the inductor is zero.

A oA

rt-3(*) i(;) g“’
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Fig. 11.92 5
AN

Solution  For ¢> 0, the transformed network is shown in Fig. 11.93.

Applying KVL to the mesh for # > 0, a3 /¥ ) % s
o3 = <—> 1(s)
—51(s5)-2s1(s)=0

S2

o3 Fig. 11.93
S2

S5I(s)+2s I(s)=

—3s —3s
e 05e
1(s)= 5 =—
s°(25s+5) s7(s+2.5)

By partial-fraction expansion,

0.5 A B C
2 e T2t
s°(s+25) s s7 s+25

0.5= As(s+2.5)+ B(s+2.5)+ Cs*
= As® +2.54s+ Bs+2.5B+Cs’

=(A+C)s* +(2.54+ B)s+2.5B
Comparing coefficients of s2, s and s°,

A+C=0
254+B=0
25B=0.5
Solving these equations,
A=-0.08
B=02
C=0.08

Is)=e ™ (_ 008 02 008 )
S ¢ s+25
-3 —3s -3s

¢ 4028 40.08-5

s s s+2.5

=-0.08

Taking inverse Laplace transform,

i(1) = =0.08u(t —3)+ 0.2r(t = 3) + 0.08¢ >y (1 - 3)

" Example ANV Determine the expression for v, (t) in the network shown in Fig. 11.94. Find v, (1)
when (i) v (1) = 0 (1), and (ii) v (t) = ™ u(1).

5Q
AAAY

H v (1)

Fig. 11.94
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Solution For ¢ >0, the transformed network is shown in Fig. 11.95.
By voltage-division rule,

S
Vi(s) = V()X —2— = ——V(s) ¥
s +

S,.5 8 10
2 v () %% Vi (s)

(a) For impulse input,

Vi(s)=1
s s+10-10 10
Vi(s)= = =1- Fig. 11.95
A T T s+10 '8
Taking inverse Laplace transform,
Vi (t) = 8()—10e " u(r) for £ >0

(b) For vy(t)=e "u(t),

1
Vs(s) = —
s+1
s
Vi(s)=————
14s) (s+10)(s+1)
By partial-fraction expansion,
A B
Vi(s)= —
A T
s 10
A= S+10 V S = = —
( ) L( )‘S=—10 S+1S:_10 9
s 1
B=(s+1)V.(s =——
( ) L( )‘S——l s+10 o 9
10 1 11
v = __
B T P
Taking inverse Laplace transform,
10 o101
vi{t) = u(t e "u(t
() ry (1)— 9 (1)
1 1
= (—Oe_lot - —e_tJu(t) fort>0
9 9

" SEINICHEREER  For the network shown in Fig. 11.96, determine the current i (t) when the switch is
closed at t = 0. Assume that initial current in the inductor is zero.

Ao A

25(t—3)<t> ) %1 H
i(1)

Fig. 11.96
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Solution For ¢ > 0, the transformed network is shown in Fig. 11.97. 2

Applying KVL to the mesh for ¢ > 0,

2e —21(s)—sl(s)=0 \ <+>
25 \ —
21(s)+sI(s)=2e* I(s)

2 -3s
I(s)==
o s+2 Fig. 11.97
Taking inverse Laplace transform,
i(1)=2e 2"yt —3) for >0

" SENICHERER  Determine the current i(t) in the network shown in Fig. 11.98, when the switch is

closed att= 0.

o>{ 10Q
o AYAVAY

50 sin 25 ¢ r\D ) §5H
i(t)

Fig. 11.98
Solution For >0, the transformed network is shown in ,\1/(\)/\/
Fig. 11.99.
Applying KVL to the mesh for # > 0, 1250 () ‘D
~
2
1290 107(s) - 51(s5) =0 ST 025 I(s)
s°+625
Hs) = 250
(s> +625)(s+2) Fig. 11.99
By partial-fraction expansion,
As+ B
=228, €
s°+625 s+2

250 = (As+ B)(s+2)+ C(s” +625)
=(A+C)s> +(24+ B)s+(2B+625C)

Comparing coefficients,
A+C=0

24+ B=0
2B+625C =250

Solving the equations,

A=-0.397

B=0.795

C=0.397
—0.3975s+0.795 0.397 0.397s 0.795  0.397

F4625  st2 94625 $4625 542

I(s)=
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Taking the inverse Laplace transform,

i(t)=-0.397cos 25t +0.032sin 25¢ + 0.397¢™ fort>0

" SEINICHEMR  Find impulse response of the current i(t) in the network shown in Fig. 11.100.

Iy (1) X, /\1/3\/
s () §1 N 2H

Fig. 11.100
Solution The transformed network is shown in Fig. 11.101. Iy (s) /\/1\/\/
2s+1 2s+1 /
2y~ M5 D) _ 254 "
2s+1+1 25+2 o § ]
V(s) 1 25+2 1 C}
I(s)=22) = - 2
Z(s) 2s+1 25+l
2s+2
By current-division rule, Fig. 11101

1 1 2542 1 1 1
x -

2512 2s+2 2s+1 2s+1 25+0.5
Taking inverse Laplace transform,

1(s)=L{(s)X

1
i(f) = Ee—"-S’u(z) fort>0

" SEINI MR  7/e network shown in Fig. 11.102 is at rest for t<0. If the voltage

v(t) = u(t)cost+ Ad(t) is applied to the network, determine the value of A so that there is no transient term
in the current response i(t).

1Q
NVVV

e i(r)w} QZH

Fig. 11.102

v(t) = u(t)cost+ AS(t)

N

s2+1

+4

Vis)=
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Solution For ¢ > 0, the transformed network is shown in Fig. 11.103. 1
Applying KVL to the mesh for # > 0, VWV
s
V()= 281(5)+ ()= 5"+ 4 vis) () ) % ps
s
I(s)
](S): S+AI(SZ+1) _ K]l +K2§+i(3
2 a s+
2(”2)(3 ) oos+y Fig. 11.103

The transient part of the response is given by the first term. Hence, for the transient term to vanish, K, = 0.
-1
— 4+ 4 é
2 \4
4
4

K, = (s + %Jl(s)h:_% =

When Ky =0
2421
4 2
A:g=0‘4
5

11.15 " RESPONSE OF RC CIRCUIT TO VARIOUS FUNCTIONS

Consider a series RC circuit as shown in Fig. 11.104.

N o,
v(t) C) ) —cC
i(t)

Fig. 11.104 RC circuit

For ¢ > 0, the transformed network is shown in Fig. 11.105. R
Applying KVL to the mesh, VWV
1 4 1
V(s)—RI(s)~—I(s) =0 vie)(*) D - &
Cs I(S)
I(s)= 1V(s) _ SV(S)]
—+R R (s +— .
Cs k RC Fig. 11.105 Transformed network

(a) When unit step signal is applied,
v(t) = u(t)
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Taking Laplace transform,
1
Vis)=—
s

H)= RS 1
R(s+) R(s+]
RC RC

Taking inverse Laplace transform,
1
fort>0

(1) =~ e’
R
(b) When unit ramp signal is applied,
wWt)=r(t)=t
Taking Laplace transform,

1
Vis)=—
S
1
SX*2 ]12

1) ==~ [
R(s+) s(s+)
RC RC

By partial-fraction expansion,

C C

s+——
RC

Taking inverse Laplace transform,
1

-—t
i(t)=C—Ce RC fort>0
When unit inpulse signal is applied,

(c)
V()= 0(1)

11.69
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Taking Laplace transform,

V(s)=1

11 1
s *TRC_RC RC
I(s) = = =—|1

1
1) 1 _EL* 1
Rl s+— Rl s+— S+—
( RC) ( RC) RC

Taking inverse Laplace transform,

1
i(t)z%{é(t)—Rl—Ce Rct} for £> 0

" SETNICHMEMOYR 4 rectangular voltage pulse of unit height and T-seconds duration is applied to
a series RC network at t = 0. Obtain the expression for the current i(t). Assume the capacitor to be initially
uncharged.

v(f)

| A on

0 T
(a) (b)
Fig. 11.106
Solution v(t) = u(t) —ut—T) '\/’3/\
1 e—sT 1— e—sT
Vis)=—- =

s s s V(s) C) ) f— é;
For ¢ >0, the transformed network is shown in Fig. 11.107. I(s)
Applying KVL to the mesh for # > 0,

1 .
V(s)—RI(s)——1I(s)=0 Fig. 11.107
Cs
1S
s 1— —sT 1 1 _sT
R = (UESLeLE R B
R+— s+— R(s+— R St—y s+——
Cs RC \" " RC RC RC

Taking inverse Laplace transform,

(1) = %{e(“)tum - e_(R]—C]([_T)u(t - T)} for >0

" Example M ER  For the network shown in Fig. 11.108, determine the current i(t) when the switch
is closed at t = 0 with zero initial conditions.



>: 30
2r(t-2) CD ) ——1F
i(1)

11.15 Response of RC Circuit to Various Functions 11.71

Fig. 11.108
Solution  For ¢ > 0, the transformed network is shown in Fig. 11.109. 3
Applying KVL to the mesh for # > 0, MV
2e7 1 2e72 <+> /) 41
~31(s)—~1I(5)=0 - m—
gz O * 1
25
(3 N l) I(s)= 2 Fig. 11.109
S sz
2 —2s ) —2s
I(s)= e _ 0 67(e) -
2 (3+_) s(s+0.33)
By partial-fraction expansion,
067 4
s(s+033) s 54+0.33
067 3
s+0.33|_,
B 0.67 _
S 1s=-033
25 25
Is)=e2 |22 )28 5 ¢
s+0.33 s s+0.33
Taking inverse Laplace transform,
i(f) = 2u(t —2)—2e "Dy (1 —2) for 1> 0

" SENICHEWOER  For the network shown in Fig. 11.110, determine the current i(t) when the switch

is closed at t = 0 with zero initial conditions.

5Q

s (%)

o NV

) ——2F
it)

Fig. 11.110

Solution For ¢ > 0, the transformed network is shown in Fig. 11.111.
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Applying KVL to the mesh for # > 0,

1—51(s)—2i1(s):0
S

1
(5+2—S)](S)—1
1

I(s):—1
5+—
2s

2s

T 10s+1
_ 0.2s

~ s+0.1
_0.2(s+0.1-0.1)

s+0.1

=0.2(1— 0.1 )
s+0.1

0.02
s+0.1

=0.2-

Taking inverse Laplace transform,
i(1) = 0.28(t)-0.02 ¢ "M u(r)

5

Q) T
1(s)

AYAAY

Fig. 11.111

" SEINI UMW  For the network shown in Fig. 11.112, find the response v, ().

2Q

N o

AAYAY o
+
vg(t) = %costu(t) (t) — %F Vo (1)
o
Fig. 11.112
Solution For 7> 0, the transformed network is shown in Fig. 11.113.
Vi(s) I_s ’\/%/\/ o
s\8) =+
257 +1 ’
By voltage-division rule, 4
) V(&) (%) — 2 v,
N 2V (s s
Vo) =Vl x—p = 2 o 5
i st2 (sT+D(s+2) ]
s Fig. 11.113
By partial-fraction expansion,
B
Vs =28, ©
s+l s+2

s=(As+ B)(s+2)+c(s* +1)

s=(A4+C)s* +(24+ B)s+(2B+C)
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Comparing coefficient of 52, s and s°,
A+C=0

24+ B =1
2B+C=0

Solving the equations,
A=04
B=02
C=-04
0.4s+0.2

0.4  0.4s

0.2

0.4

V,(s)= - = + -
(s) s2+1 s+2 241 241 s+2

Taking the inverse Laplace transform,

i(f)=04cost+0.2sins —0.4¢>

fort>0

11.73

" SEINNICMEW O  Find the impulse response of the voltage across the capacitor in the network

shown in Fig. 11.114. Also determine response v, (1) for step input.

2Q

1H

o A 7000
+
v(t) CD —1F v()
Fig. 11.114
Solution For ¢ > 0, the transformed network is shown in Fig. 11.115.
e 2 S
By voltage-division rule, A, T
1
Ve(s) =V (s)x—= o mu
2ot v () T
s
AN AC)
sT4+2s+1  (s+1)? Fig. 11.115
(a) For impulse input,
Vis)=1
1
Ve(s)=
(s+1)°

Taking inverse Laplace transform,

v.(t) = te”"u(t) fort>0
(b) For step input,
Vis)= !
s
V()= —

s(s+ 1)2
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By partial-fraction expansion,
C
(s+1)°
1= A(s+1)> + Bs(s+ 1)+ Cs

= A(s* + 25+ 1)+ B(s* + 5)+Cs

A B
I/C(S):;'Fm'i'

=(A+B)s* +(24+B+C)s+ 4
Comparing coefficient of 52, s! and s°,
A=1
A+B=0
B=—-A=-1
2A+B+C=0
C=-24-B=-2+1=-1
1 1 1
Vels) = ———————
s s+l (s+1)

Taking inverse Laplace transform,
ve(t) = u(t) —e "u(t) —te "u(t)

=(l-e'—teut fort>0

" SEINNCHEMOIYA  For the network shown in Fig. 11.116, determine the current i(t) when the switch

is closed at t = 0 with zero initial conditions.

Ao A
au-n@j .m:> %
i

T
Fig. 11.116

Solution For 7> 0, the transformed network is shown in Fig. 11.117.
Applying KVL to the mesh for 7 > 0,

o=

5¢7 6 >
——51(s)—sl(s)—==1(s)=0 VWV
S S
6 5S¢’ 5% /¥ S

SI(s)+sl(s)+—1(s) = —; 2 <;> ;:)

s S 1(s) 6

—S —S S

I(s)= Se Se T

S(s2+5546) S(s+3)(s+2)

Fig. 11.117
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By partial-fraction expansion,

1 A B C

==+ +
s(s+3)s+2) s s+3 s5+2
1

1

T (s+3)s+2)_, 6
1 1
- s(s+2)|__, - 3
_ 1 1
B s(s+3)|_, T2
I(s)=5e‘s[i+ o1 ]:ée_s+§i—§es
6s 3(s+3) 2(s+2)| 6 s 3s+3 2s5+2

Taking inverse Laplace transform,

i(f) = %u(t 1)+ ge‘“"‘)u(t —1)- % e (-1 fort>0

11.75

" SENICHEWOER  For the network shown in Fig. 11.118, the switch is closed at t = (. Determine

the current i(t) assuming zero initial conditions.

Y P 7 =

sint r\) ‘) “—05F
i(t)

Fig. 11.118

Solution For ¢ > 0, the transformed network is shown in Fig. 11.119.
Applying KVL to the mesh for 7 > 0, 2 s

5 —21(s)—s[(s)—%](s):O
s

s°+1 1
N SSICHEND
(2+s+— I(s)= I(s)
s

s?+1

_ s Fig. 11.119
(s +1)(s* +2s+2)

1(s)

By partial-fraction expansion,

_As+B+ Cs+D

241 s +25+2

s=(As+ B)(s* + 25+ 2)+(Cs+ D)(s* +1)

= As® + 245> + 2As+ Bs* + 2Bs+ 2B+ Cs® + Cs+ Ds* + D
=(A+C)s’ +(2A+ B+ D)s* +(24+2B+C)s+(2B+ D)
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Comparing coefficients of s3, 52, s and s°,
A+C=0
24+B+D=0
2442B+C=1
2B+D=0
Solving these equations,
A=02,B=04,C=-0.2,D=-0.8
02s+04 0.25+0.8
P+l 242542
02s 04 025+0.2+0.6
TP 241 (sehie()?

I(s)=

_02s 04 02(s+D) 06
s +1 241 (s+DP+1 s+ +1

Taking inverse Laplace transform,

i(t)=02cost+0.4sint—0.2e " cost—0.6 e sint
=0.2cost+0.4sint—e " (0.2 cost+0.6 sint) fort>0

" Example 11.109 For the network shown in Fig. 11.120, the switch is closed at t = 0. Determine

the current i(t) assuming zero initial conditions in the network elements.

>§ 5Q 1H
o NNN—000"

6e2! <_> " ‘D ——0.25F
I

Fig. 11.120

Solution For ¢ > 0, the transformed network is shown in Fig. 11.121.
Applying KVL to the mesh for # > 0,

st -5 1)~ 21(9)= 0 ARA——T
s+2 S
4 6
S5+s+—|I(s)=——= _6 [+ L4
B
I(s) = fs
(s+2)(s"+5s+4) Fig. 11.121
6s

(s+2)(s+D(s+4)



11.15 Response of RC Circuit to Various Functions

By partial-fraction expansion,

I(s) = 4

s+2

B
s+1

C
s+4

A= (s+DI(s) og= — 2

B = (s DI(5) o= —2

C=(s+A)(s) pgm —23

6 2 4

I(s)= - -
s+2 s+1 s+4

Taking inverse Laplace transform,
i(t)= 6e_2tu(t) —2e”'u(t)—4 e_4tu(t)

(s+D(s+4)| _
(s+2)(s+4)|,

(s+2)(s+D)],

11.77

fort>0

" SEINI RN  77e network shown has zero initial conditions. A voltage v(t) = O(t) applied to two
terminal network produces voltage v (t) = [e™*' + 7 '] u(t). What should be v (1) to give v (t) =t 7' u(t)?

A 9
v;(t) Network Vv, (1)
| 5
Fig. 11.122
Solution  For v (1) = &(1),
Vis)=1
vo(t) =[e > +e > Tu(r)
1
Vo(s)=——+
= 2t
System function H{(s) = Yols)
Vi(s)
_ 1 N 1 _ 25+5 )
s+2 s+3 (s+2)s+3)
For v,(t) = te™*'u(t),
1
Vo(s) =
‘ (s+2)
From Eq. (1),
V(s)—V"(S)— 1 (s+2)(s+3) (s+3)
’ H(s) (s+2)° 25+5 2s+2.5)(s+2)

By partial-fraction expansion, 3

Vi(s)= 2+
s+2 s+2.5
A=1
B=-05
1 .
Vi(s) = 0>

s+2 $+25



11.78 Network Analysis and Synthesis

Taking inverse Laplace transform,

vi(t)=e 2 —0.5¢ > for¢t>0

" SEICSNEEN 1 unit impulse applied to two terminal black box produces a voltage

v ()=2e"—e 7. Determine the terminal voltage when a current pulse of 1 A height and a duration of 2 seconds
is applied at the terminal.

+
is (1) Black box v, (1)
o
Fig. 11.123
Solution Vo(t)=2e " —e (0
2 1 A
Vols) =——
() s+1 s+3
When i (1) = 6(¢), 1
] g
[(s)=1 0| 2
V,(s) = Z(s) I,(s) (0 Fig. 11.124

Vols) _ 2 1
I(s) s+1 s+3

Z(s) =

When i (7) is a pulse of 1 A height and a duration of 2 seconds then,
(1) =u(t) —u(t-2)

1 -2s
Is (S) == €
S S
From Eq. (i),
2 1 1 -2s
Vo) =| <= -—= [ <=~
s+1 s+3]|s s
2 ] 26_2S e—2s

= - - +
s(s+1) s(s+3) s(s+1) s(s+3)
—2s
=2 1t nr 1 —De %S 1 1 L& 1_1
s s+1] 3]s s+3 s s+1 3 |s s+3

Taking the inverse Laplace transform,

w(t) = 2[u(t) — e u(t)] - %[u(t) —e 2 u()] - 2[ult —2)— e T Pu(t - 2)]+ %[u(t —2)—e D yr—2)]

fort>0



Exercises

Exercises 11.79

11.1 Find L{f"(t)} of /(1) = (@)

[ s +4]
slog
s

11.2 Find Laplace transform of the follwoing

function:
f(H)=t+1 0<5¢<2
=3 t>2

o)
S

11.3 For the network shown in Fig 11.125, the
switch is closed at # = 0. Find the current 11(¢)
fort> 0.

N o

Iy (f)D

Fig. 11.125

100 Q
AYAYAY

100V — §5OQ

[i,(H) =3 — e

11.4 Determine the current i(¢) in the network of
Fig. 11.126, when the switch is closed at = 0.
The inductor is initially unenergized.

2Q
NN\
i(t)
6
>i 20
§29
24V —_(— 0.5H
Fig. 11.126

[i(t) = 4(1 — e)]
11.5 In the network of Fig. 11.127, after the switch
has been in the open position for a long time,

it is closed at # = 0. Find the voltage across the
capacitor.

10A D

Fig. 11.127
(1) =1+4e1]

11.6 The circuit of Fig. 11.128, has been in the
condition shown for a long time. At ¢ = 0,
switch is closed. Find v(¢) for ¢ > 0.

WA =1

20V — v(ty —— 2F 30
Fig. 11.128

[V(f) = 7.5 + 12.5 e #191]

11.7 Figure 11.129 shows a circuit which is in the
steady-state with the switch open. At #=0, the
switch is closed. Determine the current i (7).
Find its value at # = 0.114 u seconds.

800 Q %

— W\
400Q  ==0.001 uF

i(t)

AAAY

12V —/— 200 Q

Fig. 11.129

[i() = 0.00857 + 0.01143 e875%10% 0.013 A]

11.8 Find i(#) for the network shown in Fig.
11.130.

i(f) 10Q

1, 1

1F 05F

50V — 50 50

Fig. 11.130
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[i(f) = 0.125 70308 + 3 875 £70-0521]
11.9 Determine v(¢) in the network of Fig. 11.131
where i,(07)=15Aand v (07)=5 V.

05H
7000

10V —— ;0'339 ——1F V()

Fig. 11.131
[v() =10 — 10e™ + 5¢7]
11.10 Thenetwork showninFig. 11.132hasacquired
steady state with the switch at position 1 for
t < 0. At t = 0, the switch is thrown to the
position 2. Find v(¢) for ¢ > 0.

2Q 1, 2
AA%AY 0\ © T 4
3Q
2V—/— v(t)
__05F
1H
Fig. 11.132

[V(f) =4de =2 ]
11.11 In the network shown in Fig. 11.133, the
switch is closed at 7 = 0. Find current i (¢) for

t>0.

20V

Fig. 11.133
[i,(f)=5+5e*—10e™¥]
11.12 In the network shown in Fig. 11.134, the

switch is closed at ¢+ = 0. Find the current
through the 30 Q resistor.

2H
7000

§ZOQ

10Q 1H
O—\\N—000"

10V —

§SOQ

Fig. 11.134
[i(f)=0.1818 — 0.265 71314 + 0.083 ¢ 4186 ]

11.13 The network shown in Fig. 11.135 is in steady
state with s, closed and s, open. At 7 =0, s,
is opened and s, is closed. Find the current
through the capacitor.

20 2H s s

10V — §3H “—1uF

Fig. 11.135
[i(f) = 5 cos (0.577 x 103 1)]
11.14 In the network shown in Fig. 11.136, find
currents Z,(¢) and i(¢) for £ > 0.

10Q

— N oA

") door] b

iy (8) ip (1)

50V —

Fig. 11.136
[i,()=5e i(t)=1~-e"0>"]

11.15 For the network shown in Fig. 11.137, find
currents 7,(f) and i,(¢) for £ > 0.

5Q

—%o—’\/\/\,

T L]

i (1) i (1)

50V

0.1H

Fig. 11.137
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