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Laplace Transform 

and Its Application

 11.1   INTRODUCTION

Time-domain analysis is the conventional method of analysing a network. For a simple network with fi rst- 

order differential equation of network variable, this method is very useful. But as the order of network variable 

equation increases, this method of analysis becomes very tedious. For such applications, frequency domain 

analysis using Laplace transform is very convenient. Time-domain analysis, also known as classical method, 

is diffi cult to apply to a differential equation with excitation functions which contain derivatives. Laplace 

transform methods prove to be superior. The Laplace transform method has the following advantages:

(1) Solution of differential equations is a systematic procedure.

(2) Initial conditions are automatically incorporated.

(3) It gives the complete solution, i.e., both complementary and particular solution in one step.

Laplace transform is the most widely used integral transform. It is a powerful mathematical technique which 

enables us to solve linear differential equations by using algebraic methods. It can also be used to solve 

systems of simultaneous differential equations, partial differential equations and integral equations. It is 

applicable to continuous functions, piecewise continuous functions, periodic functions, step functions and 

impulse functions. It has many important applications in mathematics, physics, optics, electrical engineering, 

control engineering, signal processing and probability theory.

 11.2    LAPLACE TRANSFORMATION

The Laplace transform of a function f (t) is defi ned as

   F L f e tst( )s ( )t= { }f t( )t −
∞

∫
0

d  

where s is the complex frequency variable.

 s jωj  

The function f (t) must satisfy the following condition to possess a Laplace transform,

 | ( ) |f t( e tt−
∞

< ∞∫ σ d

0

 



11.2 Network Analysis and Synthesis

where s is real and positive.

The inverse Laplace transform L–1LL { }F s( )  is

f t
j

F e dsddst

j

j

( )t ( )s=
− ∞j

+ ∞j

∫
1

2π σ

σ

11.3    LAPLACE TRANSFORMS OF SOME IMPORTANT FUNCTIONS

 1.  Constant Function k

The Laplace transform of a constant function is

L k ke dt k
e

s

k

s

st
st

{ }k = =ke dt
−

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
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⎦⎦
=−

−∞ ∞

∫
0 0

 2.  Function tn

The Laplace transform of f(t) is 

L t e dtn nt st{ }tn = −
∞

∫
0

Putting st = x, dt
dx

s
=

L
x

s

dx

s
x e dxdd

n

s
sn

n
n xe

n
{ }tn , ,s= ⎛

⎝
⎞
⎠

=x e dxd
+

> >
∞ ∞

+∫e
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s
sx n

x

s∫
⎛
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⎛⎛
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⎞
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⎞⎞
⎠⎠

= s− +

0

1

0
1

1
0 1n, +n 0

If n is a positive integer, n +1 !n

L
n

s

n

n
{ }tn !

=
+1

 3.  Unit-Step Function

The unit-step function (Fig 11.1) is defi ned by the 

equation,

u(t) = 1      t > 0

     = 0      t < 0

The Laplace transform of unit step function is

L e dt
e

s s

st
st

{ }u( )t = −
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
=−

∞ − ∞

∫1
1

0 0

 4.  Delayed or Shifted Unit-Step Function

The delayed or shifted unit-step function (Fig 11.2) is defi ned 

by the equation

u (t − a) = 1      t > a

          = 0      t < a

The Laplace transform of u (t − a) is

 
L e dt

e

s

e

s

st

a

st

a

as

{ }u( )t a = ⋅ = −
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
=

∞ − ∞ −

∫1
 

u (t )

1

0
t

Fig. 11.1 Unit-step function

0

u (t − a)

a
t

Fig. 11.2 Shifted unit-step function
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 5.  Unit-Ramp Function

The unit-ramp function (Fig 11.3) is defi ned by the equation

r(t)   = t t > 0

      = 0 t < 0

The Laplace transform of the unit-ramp function is

L
s

str t =−
∞

0
2

1

 6.  Delayed Unit-Ramp Function

The delayed unit-ramp function (Fig 11.4) is defi ned by the 

equation

r (t − a) = t    t > a

         = 0   t < a

The Laplace transform of r (t − a) is

        
L

e

s

st

a

as

r( )t a −
2   

 7.  Unit-Impulse Function

The unit-impulse function (Fig 11.5) is defi ned by the equation

d (t) = 0    t ≠ 0

and  d) t

∞
∫ =

The Laplace transform of the unit-impulse function is

       

L δ =
0

1

 8.  Exponential Function (eat)

The Laplace transform of the exponential function (Fig 11.6) is

L e dt
e

s a s

t

eat = = −
⎤

⎦
=at st =−

0 0 0

1

 9.  Sine Function

We know that i
j

1

2

The Laplace transform of the sine function is

L }
j j

⎫

⎭

1 1 1

2 s

1 1
2 2

⎡
s

 

10.  Cosine Function

We know that co
1

2

The Laplace transform of the cosine function is

L }e
s

e
1 1 1

2

1
+

⎡ s

s+s

1
2 2

0

r (t )

t

Fig. 11.3 Unit-ramp function

0 a
t

r (t a)

Fig. 11.4 Delayed unit-ramp function

1

0
t

d (t )

Fig. 11.5 Unit-impulse function

t

at

0

Fig. 11.6 Exponential function
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11.  Hyperbolic sine function

We know that t −
1

2
The Laplace transform of the hyperbolic sine function is 

s
=

1

2

1

2

1

2

1
2 2s s+

=

12.  Hyperbolic cosine function

We know that cosh t e
1

2

The Laplace transform of the hyperbolic cosine function is 

   
s

= +
1

2

1

2

1

2

1
2 2s

s

s
=  

13.  Exponentially Damped Function

Laplace transform of an exponentially damped function e−at f (t) is

 L e de dt− = at st− − =t t s

0 0

 

Thus, the transform of the function e−at f (t) is obtained by putting (s + a) in place of s in the transform of f (t).

 

L L

L e tat−

e t e t
−a a

co
−

s a
L

s a

+

 

 11.4    PROPERTIES OF LAPLACE TRANSFORM

11.4.1 Linearity

If sf F )  then L Ff ( )st  

where a and b are constants.

Proof t f e dt

L

stf t

f t

∞

0

e dt a s

0 0 0

∞

t e dstf ∫e dta ( )t t

 

 Example 11.1  Find the Laplace transform of 4t t+ si t .

Solution L
s

t 4
2 3

9

1

2

8
3 2

ts t ⋅ +
+

+
− s3 2

3

9

1

2+
+

 Example 11.2  Find the Laplace transform of 3te .

Solution L Lt tee =t − +e
2

2 1 1

L

s

s

1 t6

36
+ +
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 Example 11.3  Find the Laplace transform of ( )2 .

Solution L t t t t{( cos )t } {L sin ct os cos st i } {L sin }tsi 2 2)t {L sin 2 2t 2 2tt i 1 i2 2} { i} {L sin 2− cos t tt L = LLL t

s s

{ } {sin }4L} {sin

1 4

162
= −

+

 Example 11.4  Find the Laplace transform of cos ( )t bt .

Solution L b L t b t b bL t bL{cos( )t b } {L ct os sin } c {c } s {sinωt)t b } {L cos t ωtbLω bbωt stt } cos {cosbb − sin bt } ωω

ω
ω

ω

tω

b
s

s
b

s

}

cos ss b in= cos b
+

⋅bsin
+2 2ω+ 2 2ω+

 

11.4.2 Time Scaling

If then { }L f t F Lthen {{
a

F
s

a
{ (f )} ( )s

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=
1

Proof L f t f e dt

L f at f a e dt

st

st

{ (f ( )t

{ (f )} ( )at=

−
∞

−
∞

∫

∫

0

0

 

Putting at = x, dt
dx

a
=

L f
dx

a a
x e dxdd

a
F

s
x s

( )at } (f ) =
− ⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

∞ ⎛⎛⎛ ⎞⎞⎞∞

∫ ∫f x
dx

a a

s
a(f ) e

dxaxf ) e
⎝⎝⎝ ⎠⎠⎠

0 0
a a

1
d

x
a1

ff )
−⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

∞

∫
ss

a

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠  

 Example 11.5  If L f t log
s 3

s 1
{ (f )}

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

, fi nd L{f(2t)}.

Solution
L f t

s

s
{ (f )} log=

+
+

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

3

1

 

By time-scaling property,

L f t

s

s

s

s
{ (f )} log log2

1

2

2
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2
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2

6

2
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⎜
⎛⎛

⎜
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⎟⎠⎠
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+
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⎛
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 Example 11.6  If L f t
2

s
e

3

s{ (f )} = − , fi nd L f 3t{ (f )} .

Solution 
L f t

s
e s{ (f )} = −2

3

By time-shifting property,

L f t
s

e
s

e
s

e

s s s

{ (f )}3
1

3

2

3

1

3

54 18
3

3
3

3
3

3=
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= =e 3
− −1 54 −
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11.4.3 Frequency-Shifting Theorem

If f ( )s a

Proof t f t e d

L

f t

e f )} tst =−

0

0 0

s

 

 Example 11.7  Find the Laplace transform of e t4 .

Solution L
s

t
5

4
 

By frequency-shifting theorem, 

L e
!

( )s 5

4

 Example 11.8  Find the Laplace transform of ( ) et2 .

Solution L t
s s s

+ t +=
2 2 1

 

By frequency-shifting theorem,

L t
ss

+ = + +
2 2 1

13 2

 Example 11.9  Find the Laplace transform of in t4t 3 .

L t t}
1

4

3

4 s

3

s
− =sin 3

Solution By frequency-shifting theorem, 

L te }
3

s

3

s

3

4 s

3

s2
=

s s
=

− −
6

s +s 52 2 )

 Example 11.10  Find the Laplace transform of cosh at cos at.

Solution cosh  cosat at
e e

e at

L

at at
at

⎞
e −

2

1
co at at os )

{ s }

os }

s

s a

L osh acos t e ate s −

2 2

1

 

By frequency-shifting theorem,

L
s a

a

s a

a

s a

s
at at +

⎡

⎣
⎢

⎤

⎦ +
1

2

1

2 2a a

1

2

2

2 s

s a

as

⎡ ⎤

=
+ +sa s as a

2

3

4 4

2 s

a s

s

s a

⎡

⎣
⎢ =

)
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11.4.4 Time-Shifting Theorem

If L f t F{ (f )} ( )s  then L f t a e Fas{ (f )} ( )s=a)}  

Proof

      

L f t f e dtst{ (f ( )t −
∞

∫
0

      

L f t a f t e dtst{ (f )} ( )t a=a)} −
∞

∫
0

Putting       t a x dt dxdd=a ,  

When            t aa, 0x =x  

          t x→ → ∞,  

          
L f t a f e dx edd f t esf x e x ads s{ (f )} ( )x)xx ( )t=a)} e dxdf )x

∞

f

∞ ∞

∫ ∫f x e dx edd ad s( )x ( )x es(a as ∫
0 0 0

−−− =st asdt e F−as ( )s

 Example 11.11  Find the Laplace transform of cos t a( )t a .>ta

Solution Let f(t) = cos t

L f t F
s

s
{ (f )} ( )s( )s =F( )s

+2 1

By time-shifting theorem,

L e
s

s

as{cos( )t a }}a
+

−
2 1

 Example 11.12  Find the Laplace transform of e t at a > .

Solution Let f t et( )t =

   L f t F
s

{ (f )} ( )s( )s =F( )s
−
1

1
 

By time-shifting theorem,

    L e
s

t a as{ }et a −}a =
−
1

1
 

 Example 11.13  Find the Laplace transform of sin t
4

t
4

−⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

>
π π⎞⎞⎞

.

Solution Let f t t( )t sin=

L f t F
s

{ (f )} ( )s( )s =F( )s
+

1

12

By time-shifting theorem,

L t e
s

s

si −⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬ =

+

−π π

4

1

1
4

2

 Example 11.14  Find the Laplace transform of ( ) .t 13) t3
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Solution                                                 Let f(t) = t3

s
f

!3
4

By time-shifting theorem,

L e
s

st − 3
4

11.4.5 Multiplication by t (Frequency-Differentiation Theorem)

If t Ff ( )s  then L
d

ds
Ft f )} s= −

Proof
 

e dtstf t −
∞

0

Differentiating both the sides w.r.t s using DUIS,

    

d

ds
F

d

ds s
e dts t

∂
∂

∞ ∞

=
0 0

0

e dtstt t − = −−− )}

)} −

t e dt L (

L (
d

ds
F

st

0

 

 Example 11.15  Find the Laplace transform of t s at.

Solution L at
a

s a

L at
d

ds

d

ds

a

s a

as

}

t in L at =

2 2

2 2

2
2

 

 Example 11.16  Find the Laplace transform of t cos t2 .

Solution L t L
t

s

s

s
} }

2

1 2co

2

1

2

1

2

1

4
= = +=

+

L t
ds

d

ds s

s

s s
t os t

1

2

1 1 1 s
= − + = − − +

⎤
= +

− 1 4

2

2⋅
s

s

s

 Example 11.17   Find the Laplace transform of t sin t3 .

Solution L t L
t

s s s
}

2 2 2

si t

4

1

4

3 1

9

3

4

1

1

1

+ + 2 9+

L t
d

ds s s

s

s
t in t

(2 2 2

3

4

1 1

9

3

4

2

1
= −

+
= −

−
+ )2

2

9

3

2
+

+ ⎦
=

s

s

s

−
= ⋅

3

2

3

2

s s − s

s

+ 5s

(

s24

s

s 5+
s s
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 Example 11.18  Find the Laplace transform of t sin 2t cosh t .

Solution L t t t
e e

L t e
t te t{sin cosh } sL i { set i2 2t tcosh } sL in

2

1

2
2

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

= L tset in 2 −tt sin }t

= +
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
= +

+
1

2

2

4+
2

4+
1

2 5+
1

2 5+

2

2 2
+

4+ 2 2
+

2 5+( )1 ( )++1

{ sin cosh

4+)− ( s − s +

L{ t tt
d

ds
t

d

ds s s

s

s
} {

d

d
L sin ct osh }t

(
= − +

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=
−

2
1

2 5s +s

1

2 5s +s

2 2s −
2 2

+
2 5+ 2 2 522

2 2

2 52 2 2

s

s 2
+

+ 22) (2 )

11.4.6 Division by t (Frequency-Integration Theorem)

If L f t F{ (f )} ( )s ,  then L
f t

t
F ds

s

( )t
( )s

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬ =

∞

∫
Proof

L F s f e dtst( )s(s ( )t{ }f ( )t F(s −
∞

∫
0

Integrating both the sides w.r.t s from s to ∞,

f t e dt dsdd

s

st

s

( )t

∞ ∞

∫ ∫F ds( )s

0

Since s and t are independent variables, interchanging the order of integration,

  t
f t e

s

st

s

( )t
⎡

⎣⎣⎣

⎤

⎦⎦⎦ −
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

∞ ∞∞
−

∞

∫ F ds( )s = ∫f t e ds ddd tst( )t
⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥ =∫

⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

0 0s⎣⎣⎣ ⎦⎦⎦

1
∞∞ ∞

∞

=

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬ =

∫

∫

dt
f t

t
e d− t

L
f t

t
F ds

st

s

( )t

( )t
( )s

0  

 Example 11.19  Find the Laplace transform of 
1 e

t

t−

.  

Solution         L
s s

t{ }e t 1 1

1
=}e −

+
 

L
e

t s s
ds

t

s s

1 1 1

1

−⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬ = −

+
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=
− ∞ ∞

∫ ∫L dstL =e t1 − log ls −s og(gg )

log log log log

s

s

s

s

s

s

s

+

=
+

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎦⎦ +

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎦⎦

⎥⎥ = log

+

∞

∞

∞

1

1

1

1
1

1

1
11 1

1

s

s

s

s

s

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟⎠⎠
⎟⎟ = −

+
+

log l
1

s
= og
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 Example 11.20  Find the Laplace transform of 
e e

t

bt

.

Solution L
s a s b

e =
1 1

 

L
e e

t
d

s a s b
ds

bt

ss

− − ∞

⎩
∫e−

1 1 ∞=

⎡ +

+

⎡

⎣

−

log l= og

+

s a

s b+

a

s
b

s

s

s

1

1

⎤

⎦

=
+

+
−

∞

s

a

s
b

s

s a

s b+
s b+
s a

− og log l= og

1

1

 Example 11.21  Find the Laplace transform of 
sinh t

t
.

Solution L L
e e

s s

t t

t = =
+2

1

2

1 1

1

L
t

t s s
ds

s s

sinh
= −

+
=

1 1

1

1

2
slog( −

+
⎡

=
+

⎦

∞

+
1 1

1

1

2

1
1

1
1

− l= og

log

s

s

s

s

s

⎥
=

+

⎞

−
+

+

s

s

s

s

s

s

s

1

2

1
1

1
1

1

2

1

1

1 1
− og log l= og

1

 Example 11.22  Find the Laplace transform of 
cos h2t sin2t

t
.

Solution L
t

L
e e

t
t L

ecosh
sin

t

2
2

1

2

t 2⎞

⎭ t
L

t

t

L t}

te

2

+

=

L
t

t s

s

s s s

2

1

4

2 2

2

+

=
+

⎤−L t
n

tds =∫= an = −
2 2 2

tan cot

By fi rst shifting theorem,

L
t

L
t

L
t

cosh ett

2

e
+

+1

2 2

2

2
co ct 1 ot

11.4.7 Time-Differentiation Theorem: Laplace Transform of Derivatives

If t Ff ( )s  then

f

sf

f ( )

f

−

− −2
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In general,

t s Ff s′′ −  

Proof

L f e dtstf ′ ′ −t t

0

 

Integrating by parts,

t f e e dt f s e dst stf t s t t= −− −

0
0

sL

0

∫ + { }( )0 t  

Similarly,

sL ff t { }f t′ + tf ′ +s − f )}

In general,  L nf n t − −

 Example 11.23  Find L f ( )t and L f ′( )t  of 
sin t

t
t .

Solution

L L
t

t s
s

s
s

sin
ds anf t =

+

∞
−1

1

1

′ − −

∞ −

→

s

t

s

L =

2

−

1

0

ta s

lim
si t

t
s sco

 Example 11.24  Find L f ( )t and L f ( )t of the following function:

t 5

5

t

.

3 0

0 t

Solution 
e

s
s

st

f

∞

e dtst t =− d t =
0

5

+ =
−

=

− ⋅ −

0

5
3

3
1

s s

=t =
s

e

−− 5−

f 0 ( − − = s−

 Example 11.25  Find L f ( )t and L f ′( )t  of f(t) = e sin t5t− .

Solution L L t

L
s

e }
s

f t

f t′ − ⋅

1

1+
1 0

226 26+ +
s

+

 Example 11.26  Find L f ( )t and L f ′( )t of the following function: 

t 3

3

t t 0

6 t
  



11.12 Network Analysis and Synthesis

Solution L e dt
e

s
t

st

f t
−

⋅
−

e dtst t e t dt

0 3

3

⎣

⎤

⎦
⎥

⎦
+

= − − +

∞

0

3

2

0

3

3

6

3 1

e

s

e

s

s s s

st

−

2 2

3

3 1

1
3

+ = −

= +

s s s s

L = f
s

e s( )0
1

s

11.4.8 Time-Integration Theorem: Laplace Transform of Integral

If L F L dt
F

s

t

s t
s

f t

⎭
∫
0

Proof L f dt

t t
stt

0 0

f tt

⎩ ⎭

−

Integrating by parts,

L f t
e

s

e
t t st st

t

0

f tt
⎛ −

∞
− d

dt
dt dt

s s
L f

t ⎞⎡
⎢ = =∫∫ t

0

1 1
}

F

s
=

0

 Example 11.27  Find the Laplace transform of e t dt3

0

t
−∫ .  

Solution L

L e t
s

L

t

e t
!

s s

−

=
4 4

0

3 6

1
e t−2 3 =

6
4s + 2s

 

 Example 11.28  Find the Laplace transform of t cosh t dt

0

t

∫ . 

Solution L L t
e et t

t tcosh
⎞

⎭
= =

2

1

2

1

2

1
te

( )s 1

21 1

2

2 1⎤
=

+
( )

1

−
s

   L t t dt
s s

t

cosh
s0

1 1s
t tcosh  

 Example 11.29  Find the Laplace transform of the te sin 3t dt4t

0

t

∫ .

Solution

L
d

ds

d

ds s

s

L

t in t
s

te in

3t L
3 6

2
= −

6 6
t

s
}

4

[(

4

s+
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L t e
s s s

t
−− =

+0
2

1 6

+s
t dt

4s +
2)

 Example 11.30  Find the Laplace transform of e t sin 3t dt

t

0

.

Solution L
d

ds

d

ds s

s

L t t

t

t in t
s

sin

3t L
3 6

3

2

0

+

− ∫

1 6

64

0

s

L e ttt
t

+s

[ s

6

11.4.9 Initial Value Theorem

If t Ff ( )s  then lim lim ( )( s
→s

=

Proof We know that,

ff ( )−

sF L ts f )}+
∞

e dtt +−

0

lim (
s s

st

s
s f) lim e dt lim[ t dt

→∞

−
∞

→∞
′ + +

0
t

( )t

0
0

∞

→

11.4.10 Final Value Theorem

If t Ff ( )s  then lim lim ( )
t s

( s
→∞

Proof We know that

f

sF L t

f ( )

s f )}

−

+
∞

e dtt +−

0

lim (
s s

sts f) lim e dt
→

′ +
0

0

f
t

+ +
→∞

stflim e d′

t (

dt += t

0

0 0

0
im
→∞t

(
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 Example 11.31  Verify the initial and fi nal value theorems for t +1)t 2.

Solution f t e e

F
s

sF

t( )t ( )tt ( )t t

( )s
( )s ( )s

( )s

= e tt

= + +
+

=

−t ) = ee t

2 2 1

1

2 2t (t (tt

3 2( )s
+

22 2

1

1

2

1

3 2

0

2

s s s

s

f t

s s

t

s s

( )1s ( )11s

lim (f )

lim (sF ) lim

+ +
+

=

=

+

→

→∞ →∞ 11

2

1
1

1

1
1

1
3 2

1

s

s

s s
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+
+

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=

Hence, the initial value theorem is verifi ed.

lim ( )

lim ( )

t

s

f t(

sF

→∞

→

=

=

0

0
0

Hence, the fi nal value theorem is verifi ed.

 Example 11.32  Verify the initial and fi nal value theorems for e (t + cos3t)t 2(t .

Solution f t e tt( )t ( ct os )= e t− 2 3

F
s

sF
s s

t

( )s
( )s ( )s

( )s
( )s

( )s

( )s

lim

= +
+

= +

→

2 1

9) +)

2

9) +)

3 2( )s
+

))

3 2( )s
+

))

00

2

3

1

2

1
1

1
1

1
1

f t

s s

s

s

s

s s

( )t

lim (sF ) lim

=

=

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+
+⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+⎛
⎝⎜
⎛⎛
⎝⎝

→∞ →∞ ⎞⎞
⎠⎟
⎞⎞⎞⎞
⎠⎠

+

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=
2

2

9
1

s

Hence, the initial value theorem is verifi ed.

lim ( ) li ( cos )

lim ( ) lim
( )

t t

t

s

f t( cos

sF
s

→ →∞

→ →

= lim(

=

2

0 0→s 3

3 0) tt e− =

2
++

+( )
⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥ =

s

s

( )+s

1 9) +
0

2

 

Hence, the fi nal value theorem is verifi ed.

 Example 11.33  Find the initial and final values of the function whose Laplace transform is 

F(s) =
2s+1

s +6s +11s+63 2+6s
.
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Solution  F
s

s
( )s =

2 1s +
6 1s +s 1 6s +3 2+ 6s

f sF
s s

s

s s

s

s s s
( )s( )s lim lim

2

6 1s 1 6s

2 1

1
6

2

3 26

2

=sF )s
+

s6s
=

+

+ +→∞ →∞ →∞ 1111 6
0

2 3s s
+

=

f sF
s s

ss
( )s lim=

+
=

→0 0→s

2

3 2+
2

6 1s +s2s 1 6s +
0

 Example 11.34  Find the fi nal value of the function whose Laplace transform is I(s) =s
s+6

s(s+(( 3)
.

Solution I
s

s
( )s

( )s
=

+ 6

 

I
s

ss
( ) li ( )s lim=

+
+

=
→ →0 0→s

6

3
2s

11.5    LAPLACE TRANSFORM OF PERIODIC FUNCTIONS

A function f(t) is said to be periodic if there exists a constant T(T > 0) such that T f( )t T ( )t ,T  for all 

values of t.

f t T f T f f t( )t T ( )t T T ( )t T ( )tT T f (t =  

In general, f t f t( )t nT ( )t=)nT  for all t, where n is an integer (positive or negative) and T is the period of the 

function.

If f (t) is a piecewise continuous periodic function with period T then

L f t
e

f t e dt
Ts

st
T

{ (f )} ( )t=
− − ∫

1

1 0

Proof L f t f t e dt f e dtst
T

st

T

{ (f ( )t ( )t( )

∞
−f ( )d

∞

∫ ∫f e dtst( )t( )t =e dtf (t − ∫∫
0 0

In the second integral, putting t x T dt dxdd+x ,

When t T x

t x

=T x

→ → ∞
,

,

0

L f t f x e dx

f t e dt e

T
s

st
T

{ (f ( )x T )T

( )t)t

( )x T

e dtf )t=

−f T

∞

−d

∫ ∫f e dtst( )t( )t +e dtstf (t − dst

∫

0 0

0

TsTT sx

T
st

st

f x e dsx xdd

f t e dst t

f t e

( )x

( )t

( )t

∞

∞

−

∫

∫ ∫st Tsf t e dst t e( )t −dst= ∫ f e dst t)t

=

0

0 0

0

TT
Tsdt e LTs f t∫ + { (f )}
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( ) { ( )} ( )

{ ( )} ( )
1

1

0

0

={ )}

=
−

))}{

−

∫

∫

L))L)) f t(((( f t(f (( e d− t

L f{ t
e

f t( e d− t

Ts st
T

Ts

st
T

 Example 11.35  Find the Laplace transform of the waveform shown in Fig. 11.7.

f (t )

T

A

0 2T 3T
t

Fig. 11.7

Solution The function f  (t) is a periodic function with period T.

         

f t
At

T
t t

L f t
e

f t e dt

e

At

Ts

st
T

Ts

( )t

{ (f )} ( )t

=

=
−

=
−

−

−

∫

       0 < <t

1

1

1

1

0

TT
e dt

e

A

T
te dt

A

T
t

e

s

e

s

st
T

Ts

st
T

Ts

st st

−
−

− −st

∫

∫=
−

=
−

−
⎡

⎣

0

0

2

1

1

( )e Ts−1
⎢⎢
⎡⎡⎡⎡

⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

= − − +
⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

= −

− −

−

0

2 2
+

1

T

Ts

Ts Ts

Ts

T

A

T
T

e

s

e

s s

A

T

Te

( )−1 Tse−1

( )−1 Tse−1

ssT
Ts

Ts

Ts

s s

A

Ts

Ae

s

+
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

= −
−

1
2

2

( )Tse− −1

( )Tse−1

 

 Example 11.36  Find the Laplace transform of the waveform shown in Fig. 11.8.

f (t )

t

1

0 1 2 3  

Fig. 11.8
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Solution The function f(t) is a periodic function with period 2.

t

t

( )t = t

= < <
0 1t <

0 1 2

L f t
e

f t e dt

e
te dt e dt

s

st

s

st st

{ (f )} ( )t=
−

=
−

+ ⋅

−

−
d−st

∫

∫∫

1

1

1

1
0

2
0

2

2
1

2

0

1⎡⎡

⎣
⎢
⎡⎡⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

                     

=
− −

−
⎡

⎣
⎢
⎡⎡ ⎤

⎦
⎥
⎤⎤

⎦⎦

=
− −

− +
⎛

⎝⎜
⎛⎛ ⎞

⎠

−

− −

−

−

1

1

1

1

1

2 2
⎣
⎢
⎣⎣ 0

1

2 2⎝⎜⎝⎝ 2

e

e

s
t

e

s

e

e

s

e

s s

s

st st

s

s s−e
⎟⎟
⎞⎞⎞⎞

⎠⎠⎠⎠

=
1

2 2s s

s s

( )1 2−1 e−1 s
( )− −1 e s− es s−

 Example 11.37  Find the Laplace transform of the waveform shown in Fig. 11.9.

f (t )

t

1

0 a 2a 3a 4a

Fig. 11.9

Solution The function f(t) is a periodic function with period 2a.

f t
t

a
t a

a
a t a

( )t

( )a t

= <

= (

0

1
2a t)a ta <t

           L f t
e

f t e dt

e

t

a
e dt

a
a t

as

st
a

as

st

a

a

{ (f )} ( )t

(

=
−

=
−

a+ (

−

−

∫

∫

1

1

1

1

1
2

2
0

2

2
))

( )

e dt

a(

e

s
t

e

s

e

st

a

a

st st
a

s− −st −

∫
⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

=
−

−
⎡

⎣
⎢
⎡⎡ ⎤

⎦
⎥
⎤⎤

⎦⎦
+

2

2s
t

2 )as
⎣
⎢
⎣⎣ 0

1 t stt t

a

a

as

s

e

s

a

e

s s

−
+

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

= − +
−

( )a tt

( )ase−

1 1

2

2

2 2as )as 22

2

2 2
+ −

2

⎛

⎝⎜
⎛⎛ ⎞

⎠⎟
⎞⎞

⎠⎠

− −2e

s

e

s

as as
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=
− + −2 − 1+ 2

2 2

e e+1+
as

as as

as( )−1 2−1 e as

=

=
−

=

−

−

( )− −

( )( )+ −

( )+ −

)− − (

1

2

2

2

2 2

as )( +

e

as

e e−2 −

as

as as

as

as

as as

asaa e e

as

as

as as

2 2 2e

2

2

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

=

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−

tanh

 Example 11.38  Find the Laplace transform of the waveform shown in Fig. 11.10.

f (t )

t

1

−1

0 a 2a 3a 4a

Fig. 11.10

Solution The function f(t) is periodic with period with period 2a.

f t t a

a t a

( )t = <
= −

1 0

1 2a t <t

L f t
e

f t e dt

e
e dt e dt

as

st
a

as

st st

a

{ (f )} ( )t

( )

=
−

=
−

e st (

−

−
−d

∫
1

1

1

1

2
0

2

2

2aaa

as

st
a

st

a

a

e

e

s

e

s

∫∫
⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

=
− −

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
+

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫

−

− −st ⎤ ⎡

0

2

0

2
1

1
⎬⎬
⎪⎫⎫
⎬⎬⎬⎬
⎭⎪
⎬⎬⎬⎬
⎭⎭

=
−

−
−

+ + −
⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠

=
+

−

− − −1

1

1

1

2

2

2

e

e

s s

e

s

e

s

s e+1

as

as as as

as( )− −1 e as

( − −−− −as ase)( )1
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=
−

= ⋅
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

= ⎛
⎝

−

−

−

1

1

1

2

2 2

2 2+

e

s

s

e e−2 −

e e+2 +

s

as

as

as

as as

as as

( )+ −1 e+1 as

tanh ⎜⎜
⎛⎛⎛⎛
⎝⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

 Example 11.39  Find the Laplace transform of the waveform shown in Fig. 11.11.

f (t )

t
p
w

a

O 2p
w

3p
w

Fig. 11.11

Solution The function f(t) is known as a half-sine wave rectifi er function with period 
2π
ω

.

f t a t t

t

( )t si <t= a <

<= <

ωt
π
ω

π
ω

π
ω

0

0
2

The function f(t) is a periodic function.

L f t

e

f t e dt

e

s

st
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 Example 11.40  Find the Laplace transform of 

f t t( )t = t2 0 2t <   

if  f t f t( )t ( )t= f t .

Solution The function f(t) is a periodic function with period 2.
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 Example 11.41  Find the Laplace transform of

  f t et( )t = e 0 2t < π
if f t f t( )t ( )t .= f t

Solution The function f(t) is a periodic function with period 2p.
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 Example 11.42  Find the Laplace transform of the function shown in Fig. 11.12.

f (t)

t
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1

T 2T 3T 4T

Fig. 11.12

Solution The function f(t) can be represented in terms of Heaviside unit step function.
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11.6    WAVEFORM SYNTHESIS

Any waveform can be constructed with unit step, unit ramp and unit impulse 

functions, etc. We know the Laplace transforms of these special functions. 

Hence, we can fi nd the Laplace transform of any function in terms of Laplace 

transform of these functions.

There is another way of synthesising the waveforms. Any function can 

be expressed in terms of a gate function. The gate function is shown in 

Fig. 11.13.

This function can be expressed in terms of unit-step functions.

f t Au Au( )t ( )t ( )t T= Au(t

f (t )

0 T

A

t

Fig. 11.13 Gate function
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 Example 11.43  Find the Laplace transform of the unit-doublet function.

Solution The unit-doublet function d ′(t) is shown in Fig. 11.14.
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 Example 11.44  Find the Laplace transform of a rectangular pulse shown in Fig. 11.15.

f (t )

0 T

1

t

Fig. 11.15

Solution The rectangular pulse can be constructed from two functions as shown in Fig. 11.16. This function 

is known as gate function.
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f1 (t )
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0
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Fig. 11.16
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 Example 11.45  Find the Laplace transform of a sawtooth waveform shown in Fig. 11.17.

f (t )

0 T

A

t

Fig. 11.17

f (t )

0
t

Fig. 11.14
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Solution The sawtooth waveform can be constructed from three functions as shown in Fig. 11.18.
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Fig. 11.18
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 Example 11.46  Find the Laplace transform of a triangular waveform shown in Fig. 11.19.

f (t )
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0 T T

2

Fig. 11.19

Solution The triangular waveform can be constructed from three ramp functions as shown in Fig. 11.20.
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Fig. 11.20
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 Example 11.47  Find the Laplace transform of a trapezoidal pulse shown in Fig. 11.21.

f(t )

t
0

1

a 3a2a 4a

 

Fig. 11.21

Solution The trapezoidal waveform can be constructed from four ramp functi ons as shown in Fig.11.22.
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Fig. 11.22
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 Example 11.48  Find the Laplace transform of a sinusoidal waveform shown in Fig. 11.23.
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0 T
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Fig. 11.23

Solution The waveform can be constructed from two functions as shown in Fig. 11.24.
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Fig. 11.24
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 Example 11.49  Find the Laplace transform of the waveform shown in Fig. 11.25.
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Fig. 11.25

Solution The function f t( )t  can be expressed as sum of four step functions.
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 Example 11.50  Determine the Laplace transform of the waveform shown in Fig. 11.26.
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Fig. 11.26

Solution The function f t( )t can be expressed as sum of four functions as shown in Fig. 11.27.
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Fig. 11.27
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 Example 11.51  Find the Laplace transform of the waveform shown in Fig. 11.28.
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Solution The given parabolic waveform can be constructed from three functions as shown in Fig.11.29.
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 Example 11.52  Find the Laplace transform of the waveform as shown in Fig. 11.30.
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Fig. 11.30

Solution The given waveform can be constructed from four functions as shown in Fig. 11.31.
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Fig. 11.31
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 Example 11.53  Find the Laplace transform of the periodic waveform shown in Fig. 11.33.
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Fig. 11.33

Solution The function f t( )t  is a periodic function with period 2.

The function f t( )t  can be constructed from three functions by waveform synthesis.
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 Example 11.54   Find the Laplace transform of the waveform shown in Fig. 11.34.

f (t )
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Fig. 11.34

Solution The function f t( )t  is a periodic function with period T.

The function f t( )t  can be constructed from three functions by waveform synthesis.
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 Example 11.55  Find the Laplace transform of periodic waveform shown in Fig. 11.35.

f (t )
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Fig. 11.35

Solution The function f t( )t  is a periodic function with period T.

The function f t( )t  can be constructed from two functions by waveform synthesis.

f t A t t t
T

u t
T

F AL t1FF

2 2
( )t si ((t ) sA i

( )s {sin

t= A t ) −⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

ωt(t u ) sAtt u )

ω uuu t t
T

u t
T

A
s

A
s

e( )t } sAL i −ttsAL in
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬ =

+
+

+
ω

ω
ω

ω
ω2 2⎠⎠⎠ ⎝⎝⎝ 2 2+ ω 2 2+ ω

− −−−
=

+
+

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

Ts Ts
A

s
e2

2 2+
21

ω
ω

The Laplace transform of the periodic function f t( )t  is 

L f t
e

F

e

A

s
e

A

s

Ts

Ts

Ts

{ (f )} ( )s=
−

=
− +e sTs

+
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

=
+

+

−

−

−

1

1

1

1
1

1

1FF

2 2+
2

2 2+

ω
ω

ω
ω

ee

e e

A

s
e

Ts

Ts Ts

Ts

−

− −

−

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

=
+

−

2

2e2
⎞⎞⎞

+
⎛⎛⎛

2 2+
2

1 e− 2
⎞
⎟
⎞⎞ ⎛

⎜
⎛⎛

1

1

ω
ω
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11.7    INVERSE LAPLACE TRANSFORM

If L f t F{ (f )} ( )s then f t( )t  is called inverse Laplace transform of F( )s and symbolically written as

f t L s( )t { (F )}= LL 1

where L−LL 1  is called the inverse Laplace transform operator.

Inverse Laplace transform can be found by the following methods:

 (i) Standard results

 (ii) Partial fraction expansion

 (iii) Convolution theorem

11.7.1 Standard Results

Inverse Laplace transforms of some simple functions can be found by standard results and properties of 

Laplace transform.

 Example 11.56  Find the inverse Laplace transform of 
s 3s+ 4

s

2

3
.

Solution F
s

s s s s

L s t t

( )s

{ (F )}

= = − +

+LL

2

3 2s s 3

1 2t t{ (F )} +

3 4s +s 1 3 4

3 2

 

 Example 11.57  Find the inverse Laplace transform of 
3s+ 4

s + 92
.

Solution  F
s

s

s s

L s t t

( )s

{ (F )} st in

=
+

=
+

+
+

+ttLL

3 4s +
9

3

9

4

9

3 3cos
4

3
3

2 2+ 9 2

1

 

 Example 11.58  Find the inverse Laplace transform of 
4s+15

16s 252 −
.

Solution F
s

s

s

s

s

s s

( )s =
−

=
−⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= +
−

4 1s + 5

16 25

4 1s + 5

16
25

16

1

4 25

16

15

16

1
2

2 2 225 16 2522

16

1

4

5

4

3

4

5

4

1L 1 s t tLL +t{ (F )} cosh sinh

 Example 11.59  Find the inverse Laplace transform of 
2s+ 2

s + 2s+102
.

Solution F
s

s s

L s e L
s

s

t

( )s
( )s

( )s

{ (F )}

=
+

=

+
⎫
⎬
⎫⎫
⎭
⎬⎬

⎧
LL

2 2s +
1+s 0

2(s

9) +)

2
9

2 2( )+ 2 1+ 0 ))

1 1Lt{ (F )}(F )} −(F )} −LL2
2⎨⎨

⎧⎧⎧⎧

⎩
⎨⎨⎨⎨ = 2 3− t3t
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 Example 11.60  Find the inverse Laplace transform of 
3s 7

s 2s 32

+
2s

.

Solution  F
s

( )s
( )

( )s

( )s

( )s ( )s
= =

+)
= +

3 7s +
2 3s −s

3(s 10

4) −)
3

4)
10

1
2 2( )2 3 ) 2 22

1 1

2

1

2

4

3
4

10
1

4
3

−

−
⎫
⎬
⎭
⎬⎬

⎧
⎨
⎩
⎨⎨ +

−
⎫
⎬
⎫⎫
⎭
⎬⎬

⎧
⎨
⎧⎧

⎩
⎨⎨ =−L 1−1 e3=s L

s

s
e L−

s
et10

⎫
⎬
⎫⎫1t ⎧

⎨
⎧⎧

+L
s

e t{ (F )} cosh 2 522 2e5 tt sinh

11.7.2 Partial Fraction Expansion

Any function F( )s can be written as 
P

Q

( )s

( )s
 where P( )s  and Q( )s  are polynomials in s. For performing 

partial fraction expansion, the degree of P( )s  must be less than the degree of Q( )s .  If not, P( )s must be 

divided by Q( )s , so that the degree of P( )s becomes less than that of Q( )s . Assuming that the degree of 

P( )s is less than that Q( )s , four possible cases arise depending upon the factors of Q( )s .

Case I Factors are linear and distinct,

F
P

( )s
( )s

( )s a ( )s b
=

)a (s

By partial-fraction expansion,

F
A

s a

B

s b
( )s =

+
+

Case II Factors are linear and repeated, 

F
P

n
( )s

( )s

( )s a ( )s b
=

)a (s

By partial-fraction expansion, 

F
A

s a

B

s b

B Bn

n
( )s

( )s b
...

( )s b
=

+
+ + + +...

1 2BB B
+

2

Case III Factors are quadratic and distinct,

F
P

( )s
( )s

( )s as b ( )s cs d
=

as cs2 2)b (

By partial-fraction expansion,

F
As B

s as b

Cs D

s cs d
( )s =

+
+ as

+
+

+ cs2 2b+
+

Case IV Factors are quadratic are repeated,

F
P

n
( )s

( )s

( )s as b ( )s cs d
=

as cs2 2)b (

By partial-fraction expansion,

F
As B

s as b

C s D

s cs d

C s D C s Dn nC s D
( )s

( )s cs d
...=

+
+ as

+
+

+ cs
+

+
cs

+ +...
+

2

1 1C s DD+
2

2 2C s D+
2 2)d ( )(( n2
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 Example 11.61  Find the inverse Laplace transform of 
s

s

+ 2

( )s +1 ( )3s +s
.

Solution F
s

s
( )s

( )s ( )
=

+ 2

))(s)(s

By partial-fraction expansion,

F
A

s

B

s

C
( )s = +

+
+

1 3s +

A sF
s

s
s

=sF
+

==
=

( )ss
( )s + ( )0

0

2

)(s +s

2

3

B F
s

s

C F
s

s

s
s

s

=
+

= −

=
+

=−
=−

=−

( )s +s ( )s
( )s +

( )s +s ( )s
( )s +

2 1

2

2

1
1

3
ss=−

= −
3

1

6

F
s s s

L s L
s

L
s

( )s

{ (F )}

= −
+

−
+

⎫
⎬
⎫⎫
⎭
⎬⎬

⎧
⎨
⎧⎧

⎩
⎨⎨ −

+
LL −LL

2

3

1 1

2

1

1

1

6

1

3

2

3

1 1⎫
⎬
⎫⎫

2

11 1L{ (F )} −LL(F
2 1

⋅− ⋅

11

1

6

1

3

2

3

1

2

1

6

1 31 2 1 1⎫
⎬
⎫⎫
⎭
⎬⎬

⎧
⎨
⎧⎧

⎩
⎨⎨ −

+
⎫
⎬
⎭
⎬⎬

⎧
⎨
⎩
⎨⎨ = −−1L−

s
e e− t31

 Example 11.62  Find the inverse Laplace transform of 
s 2

s2 ( )s 3+
.

Solution F
s

s
( )s

( )s
=

+ 2
2

By partial-fraction expansion,

F
A

s

B

s

C

s

s A B Cs

As B CsCC

( )s

( ) ( )s

(

= + +
+

+) +)

= +As

=

2

2

2 2A B C+

3

2 As(s

3 3As s+ +BsA B+ +B

A CAA A BC) (ss )2 3s +s3A B+ B)

Comparing coeffi cients of s s s2 1 0, ,s sand

A C

A

=C 0

3 1A B+ =B

3 2B =
Solving these equations,

A B C=B = −
1

9

2

3

1

9
, ,B

3

F
s s s

( )s = + −
+

1

9

1 2

3

1 1

9

1

32
⋅+ ⋅

L s L
s

L
s

L
s

tLL −LL−LL
⎫
⎬
⎫⎫
⎭
⎬⎬

⎧
⎨
⎧⎧

⎩
⎨⎨ + ⎫

⎬
⎫⎫
⎭
⎬⎬ −

+
⎫
⎬
⎫⎫
⎭
⎬⎬ = + −1 1L−LL 1

2

11

9

1 2⎫
⎬
⎫⎫

3

1 1⎫
⎬
⎫⎫

9

1

3

1

9

2

3

1

9
{ (FFF )} ee t−⎧

⎨
⎧⎧

⎩
⎨⎨

⎧
⎨
⎧⎧

⎩
⎨⎨ 3
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 Example 11.63  Find the inverse Laplace transform of 
s 15s 11

(s+1)(s1 2)

2

2

− −15s

−
.

Solution F( )s
( )s ( )s

=
5 1s 5 1s −s 1

)()(s

2

2

By partial-fraction expansion,

F
A

s

B

s

C
( )s

( )s
=

+
+ +

1 2s − 2

5 15 112 215 11

2 2

15 A B C

A B

15 + B

= A

( )22s ( )1s +s ( )s 22 ( )1s +

( )42 4 4s s 4−s 44 ( )22s s −s +++

= − + +

= −

C

As s A B+ s B− s B− Cs c

s − s A

( )+s

( )A B+ ( )A B C ((

4 4+As 2

s +)+A B C− 2

2 2A A B+4 4+A

2 B CBB )

Comparing coeffi cients of s s s2 1 0, ,s sand

A B

A C

A B C

+ =B

+B = −

5

4 1A B C+ −B = 5

4 2A 11

Solving these equations,

A

B

C

=
=
= −

1

4

7

F
s s

L s L
s

L
s

( )s
( )s

{ (F )}

=
+

+
−

−

+
⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬ +

−
⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
LL −LL

1

1

4

2

7

1

1
4

1

2

2

1 1L{ (F )} −LL(F 1 ⎬⎬
⎫⎫⎫⎫
⎭
⎬⎬⎬⎬ −

⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬ = −⎨⎨⎨ ⎬⎬⎬−7

1
4 7−1

2

2 27L− e + 4 tet + 4 2 t

( )− 2s

 Example 11.64  Find the inverse Laplace transform of 
3s+1

(s+1)(s1 + 2)22
.

Solution F( )s
( )s ( )s

=
3 1s +
)()(s2

By partial-fraction expansion,

F
A

s

Bs C

s
( )s =

+
+

+
+1 22

3 1

2

2

2 22

2

s A1

As A s B2 s Cs CCC

s2 s

1

= +2As + Bs2 CsCC

=

( )22s 22 2 ( )Bs C ( )1s

( )A B+A ( )B C+B +++ ( )+
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Comparing coeffi cients of  
2 1 0

=
0
3

2 1=
Solving these equations,

2

3

2

3

7

3

F
s

s

s s

L
s

s = −
+ +

+
+

2

3

1

1

2

3

7 1

2

3

1

1

2 2

1

3 2

7

3

1

2

2

3

2

3

7

3 2
2

2

1

2
L

s

s
L

s
e t−

+
+

+
= − in

 Example 11.65  Find the inverse Laplace transform of 
s

s s
.

Solution F
s s s s

s

s
s

s s
= =

⎣
=

+
−

2s 3

s− −
s

1

3 1

L
s

s
L

s

2

2

1

4

3 1 4s

+
⎡

+
1

3
− cos

11.7.3  Convolution Theorem

If L 1F t  then L du

t

0

F ( )t u

where  t

t

t )∫  

Proof F

0 0

∞

e f uu e dvsv v−

∫ ∫

∞

∞

e f− u dv

e f− v

v

v

00

0 0

du

Putting t dv dtv  

When u

v t

F dt

u

=
→ ∞

⎥
∞

0

s dt du

∞

00

The region of integration is bounded by the lines u 0 and u t.  

To change the order of integration, draw a vertical strip which starts 

from line u = 0  and terminates on the line u t.  Hence, u varies 

from 0 to t and t varies from 0 to ∞

F f du

t t

00 0

( )t u

∞

∫ e f L=

u

t
u

Fig. 11.36
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Hence,  du

t

0

F

Note Convolution operation is commutative, i.e.,

L du

t t

0 0

u

⎭
f du( )t u =

 Example 11.66  Find the inverse Laplace transform of 
1

(s )(s 1)
. 

Solution F s
s

1

s

Let F
s s

e

1

2

1

1
s

t

+
=

By convolution theorem,

L s e du e
e e

t t
t

u
t

t−

=
0 0

3

0
3 3

1( e t3 )

 Example 11.67  Find the inverse Laplace transform of 
1

2 2s s
. 

Solution F
s

s
s

1
2 2

Let F F
s

tt

s
( )s

s=

−

1 1
2 2

By convolution theorem, 

L s e du

t t

u−

0 0

u− −− t −
0

u e
t

)

−te

 Example 11.68  Find the inverse Laplace transform of 
1

(s 2)(s )2
.

Solution F s
s

=
1

s 2

Let    F F
s

et t

2

2

1 1

2
s

( )s 2
s

t

=

= =
By convolution theorem,

L e
ue eu t

ttt
t= =2−

000

2
4

4

t u−

0

2

2

16 4 16

1

16

16 4

u
t

t

2

e
te

e e

⎡

⎣
⎢

⎤ −⎛ ⎞

= −
−

16

1

16
t e4t 2
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 Example 11.69  Find the inverse Laplace transform of 
1

2 2s ( )12s
.

Solution F
s

( )s
( )s

=
1

2 2(

Let F
s

F
s

f t t t

1FF
2 2FF

2

1

1

1
( )s ( )s

( )tt sin (f2t ffn (t f ))

=
+

=

t= sin (t f2t ff

By convolution theorem,

L s t u t t

t
t

LL t [ ]t ut −∫1

0
0

{ (F )} sin (uu ) du = [ uu st]u = t
0

i

 Example 11.70  Find the inverse Laplace transform of 
1

(s+1)(s1 +1)12
.

Solution F( )s
( )s ( )s

=
1

)()(s2

Let        F
s

F
s

f t t e t

1FF
2 2FF
1

1

1

1
( )s ( )s

( )tt sin (f2t ffn (t f ))

=
+

=
+

t= sin (t f2t ff −

By convolution theorem,

L s u du e
e

u

t
u t t

t u

LL u −e u∫ ∫d∫ d1

0 1
2

{ (F{ (FF )})} seu t∫u e duu e du in (sin cos )ut u
⎡⎡

⎣
⎢
⎡⎡⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
=

= +

−

−

0
2

1

2

1

2

t
t

t

t

e
t t

t − e

[ ((tet sin c−t os ) ]+1

(sin cos )t

11.8     SOLUTION OF DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

The Laplace transform is useful in solving linear differential equations with given initial conditions by using 

algebraic methods. Initial conditions are included from the very beginning of the solution.

Linear

differential

equation

Solution of

differential

equation

Algebraic

equation

Solution of

algebraic

equation

Laplace

transform

Inverse

Laplace

transform
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 Example 11.71  Solve  
dy

dt
+ 2y =2 e , y(0) = 1.-3t

Solution Taking Laplace transform of both the sides,

sY y Y
s

sY Y
s

Y

( )s ( ) ( )s

( )s ( )s [ (y ) ]

( )s ( )s( )

− y( =
+

=
+

=Y ( )s

2) +)
1

3

1 2
1

3
0)

11

3
1

4

3
4

s

s

s

Y
s

+
+ =1

+
+

=
+

( )s
( )2s + 22 ( )3

By partial-fraction expansion,

Y
A

s

B
( )s =

+
+

2 3s +

A Y
s

s

B Y
s

s

s
s

s
s

=
+
+

=

=
+
+

= −

=−
=−

=−
=−

( )s +s ( )s

( )s +s ( )s

4

3
2

4

2
1

2
2

3
3

Y
s s

( )s =
+

−
+

2

2

1

3
Taking inverse Laplace transform of both the sides.

y e e t( )t e= −2 2 3ett

 Example 11.72  Solve y y t 0 y 0″ ′t 0+ =y =y, (y ) ,111 ( )0( )00 .

Solution Taking Laplace transform of both the sides,

[ ( ) ( ) ( )] ( )

( ) ( )

s) y y( ) Y (
s

s Y s) Y (
s

2

2

2

2

0 0) ()
1

1

( ) + =)Y (

− +s =

′

( ) ( )

( )
( ) (

[ ]( ) , (y y( ) ,1)) 0y( ) ′∵ )) =

=( ) + =

=
+

= +

1 1+

1

) 1+
1

2

2

3

2

3

2 2( 2 2
+

1+

Y))
s

s
s

s

Y (
s

s (

s

s s1+ s2 222

2 2

2 2 2 2 21 1 12

1 1

1+
= +

+1

+
= + −

2 +) (2 212 )

s s s+ −1

s(

s

s s1 s

Taking inverse Laplace transform of both the sides,

y t t t( )t cos st t in= tcos t

 Example 11.73  Solve y y t 2t 0 y 22″ + ′= t =y −, (y ) ,44 ( )0( )00 .

Solution Taking Laplace transform of both sides,

s Y sy ys
s s

s Y s sY

2

3 2s

2

y
2 2

4 2

( )s ( )0 ( )0

( )s (

sys⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤ + [ ]sY y( )s( ) ( )0sY ( )s = +

3

s4s +

′

ss
s s

) − = +4
2 2
3 2s

+
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s

Y
s

3 2 3

2 2
s

2

2 4

= + + + s

= +
s s s s s s s s s s s2 2 4 4

2 2 4 2 2

1

2 2 2

1
+ + −

+
= +

+

Taking inverse Laplace transform of both the sides,

y
t

e tt −
3

3
2 2+

 Example 11.74  Solve y y 0′0= 0

Solution Taking Laplace transform of both the sides,

s Y

s Y 0 0

s 0

s y ]

(

+ s

s ′
s

 

Y
s

s
+
1

42

Taking inverse Laplace transform of both the sides,

y tt sin=
1

2
2

 Example 11.75  Solve 00 0

Solution  Taking Laplace transform of both the sides, 

s Y e

s Y sY s

ss 0

s

+ 0s + =s −

( )

=

+

−

−

32

Y e

Y
e

s

s

s e
e

s s

s
s

+ +

−
−

2

1 1

2s 2+s

Taking inverse Laplace transform of both the sides,

y t − t  

 Example 11.76  Solve y 1= 0

Solution Taking Laplace transform of both the sides,

s Y
e

s

s Y Y
e

s

s

s

2

2

s 0

s ( )s [ (y

+ =s
−

−

1

1

1

4

2

2 2

]

=
+

−e

s

Y (
e

s s

e

s

′

s

s

s s4

1 1

42 2
−

+

 

Taking inverse Laplace transform of both the sides, 

y t tt u= −
1

4

1

4
t(

1
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11.9    SOLUTION OF A SYSTEM OF SIMULTANEOUS DIFFERENTIAL EQUATIONS

The Laplace transform can also be used to solve two or more simultaneous differential equations. The Laplace 

transform method transforms the differential equations into algebraic equations.

 Example 11.77  Solve 
dx

dt
y sin t+ =y .

dy

dt
x cos t+ =x  

where x(0) = 0 and y(0) = 2. 

Solution Taking Laplace transform of both the equations,

sX x Y
s

( )s ( ) ( )s+)− x( =
+

1

12
  

sX Y
s

( )s ( )s =Y ( )s
+

1

12
   …(i)

and

 

sY y X
s

s

sY X
s

s

( )s ( ) ( )s

( )s ( )s( )

+)− y( =
+

=X ( )s
+

+

1

1
2

2

2

sY X
s s

s
( )s ( )s( ) =X ( )s

+
2 2s s+ +s

1

2

2
  …(ii)

Multiplying Eq. (i) by s,

s X sY
s

s

2

2 1
( )s ( )s( )+ =sY )s

+
  …(iii)

Subtracting Eq. (iii) from Eq. (ii),

( ) ( )X)2 2) ( )X) (X) )(X)

X
s

( )s = −
−

2

12
  …(iv)

Substituting X ( )s in Eq. (i),

Y
s

s

s
( )s =

+
+

−
1

1
2

12 2+
+

1
2   …(v)

Taking inverse Laplace transform of Eqs (iv) and (v),

x t( )t sinh= −2  

and y t t( )t sin ct osh= tsin t 2

 Example 11.78  Solve 
dx

dt
y et− y

dy

dt
+ x = sin t

where x(0) = 1 and y(0) = 0.  
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Solution Taking Laplace transform of both the equations,

sX x Y
s

( )s ( ) ( )s−)x( =
−
1

1
 

sX Y
s

s

s
( )s ( )s( )s =Y ( )s

−
+ =

−
1

1
1

1
  …(i)

and sY y X
s

( )s ( ) ( )s+)− y( =
+

1

12

sY X
s

( )s ( )s =X ( )s
+

1

12
  …(ii)

Multiplying Eq. (i) by s, 

s X sY
s

s

2
2

1
( )s ( )s( )s =sY )s

−
 …(iii)

Adding Eqs (ii) and (iii),

( ) ( )

( )
( ) ( )( )

X)
s

s

s

X (
s

)(

2

2

2

2 2)

2

2

1

1 1

1

) (2)

=( )X)
+

+
−

= +
)()(

 

= +
−

+
+

+
+

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

1 1

2

1

1 1

1

12 2 2 2+
+

1( )+12 +1 s

s

s s+1
  …(iv)

Substituting X(s) in Eq. (i),

Y sX
s

s

s s s

s

Y
s s

( )s ( )s( )s
( )s ( )s ( )s

( )s
( )s (

= −sX ( )s
−

= −
)(s

−
−

= −

1 ) (s 12

3

2

2 2) s sss 1 1+s2)()( )

 

= −
−

−
+

+
+

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

s

s

s

s s+( )+s2 2)+ 2 2+
+

1

2

1

1 1

1

1
  …(v)

Taking the inverse Laplace transform of Eqs. (iv) and (v),

     x t t t t t tt tt( )t (sin cos )t ( cet os s n )tt ( cete os sin ct t os= t(sin et =)tt +t
1

2

1

2

1

2
2 tt)  

and y t e t t tt tt t t t( )t sin (t cos st in ) ( sin ct ett e os sin )t= t t ttt t sin t + tcos
1

2

1

2

1

2
 

 Example 11.79  Solve 
dx

dt
+ 5x -55 2y = t

   
dy

dt
+ 2x+22 y = 0  

where x(0) = 0 and y(0) =0 0.
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Solution Taking Laplace transform of both the equations,

s X X
s

s sx =−5+
1
2

( )Y
s

1
2

  …(i)

and sY Xs s + =s2+ 0

2 01 ( )s   …(ii)

Multiplying Eq. (i) by 
1

2
( )1 ,  

1

2

1

2 2
1 ( )X Y1

s

s
− =

+
  …(iii)

Adding Eqs (ii) and (iii),

X
s

s
s

s
=

+1
2 2

  …(iv)

Substituting X(s) in Eq. (ii),

Y
s

s
s

= −
2

2 2
  …(v)

Now, X
s

s
s

s

+1
2 2

 

By partial-fraction expansion,

X
A

s

B

s

C D
s

s
+ +

2 2

ssAs C+s + s + s +   …(vi)

= + +

+ +

+ Ds

Bs Bs

+s 2

2

+s +

+ 6 2+ + + s
 

= +++ s s s B++ +

Comparing coeffi cients of s s3 2 1 0 ,

=

=

=B

0

6 3 0

A 1

9 1B

Solving these equations,

C D= = −
1

27

1

9

1

27

2

9
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X
s s s

( )s
( )s

= ⋅ + ⋅ − ⋅
+

− ⋅
1

27

1 1

9

1 1

27

1

3

2

9

1
2 2s ( )+27 3 9

Taking inverse Laplace transform of both the sides,

x t e te t( )t = + −e−1

27

1

9

1

27

2

9

3 3tet tet 2

Similarly,

Y
s

A

s

B

s

C

s

D

s s s
( )s

( )s ( )s
=

−
= + +

+
+ = ⋅ − ⋅ − ⋅

+
2

3

4

27

1 2

9

1 4

27

1

32 2( ) 2 2s ( )
+

+
+

3 2
− ⋅−−

2

9

1
2( )+ 3

Taking inverse Laplace transform of both the sides,

y t e te t( )t = − −e−4

27

2

9

4

27

2

9

3 3tet tet 2

 11.10    THE TRANSFORMED CIRCUIT

Voltage–current relationships of network elements can also be represented in the frequency domain.

Resistor 1.  For the resistor, the v–i relationship in time domain is

v (t) = R i (t)

The corresponding frequency–domain relation are given as

V (s) = RI (s)

The transformed network is shown in Fig 11.37.

+

−

++

−−

I (s)i (t)

v (t) R RV ((s)

Fig. 11.37 Resistor

Inductor 2.  For the inductor, the v–i relationships in time domain are

 

v L
di

dt

i
L

v dt i

t

( )t

( )t ( )t( )t ( )

=

+dtv= )t∫
1

0

 

The corresponding frequency-domain relation are given as

 

V Ls I L i

I
Ls

V
s

( )s ( )s ( )

( )s ( )s)
( )

= −Ls I )s

= +V )s
1

V
i

( )
(  

The transformed network is shown in Fig 11.38.

+ + +

−−−

v (t)

i (0)

i (t )

V (s) V (s)

I (s)

Ls

−
+

Li (0)

i (0)Ls
s

I (s)

Fig. 11.38 Inductor
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Capacitor  3. For capacitor, the v−i relationships in time domain are

v
C

i dt v

i C
dv

dt

t

( )t ( )t ( )

( )t

+i dt)t=

=

∫
1

0

The corresponding frequency–domain relations are given as

V
Cs

I
s

I CsV Cv

( )s ( )s
( )

( )s ( )s( )s ( )

= +I )s

= −CsV )s

1
I

v
( )

(

The transformed network is shown in Fig 11.39.

+ + +

−−−

v (t)

i (t)

V (s)

Cs

V (s)

I (s)

1

+
−

Cv (0)

v (0)
s

I (s)

CsC

1

Fig. 11.39 Capacitor

11.11    RESISTOR–INDUCTOR CIRCUIT

Consider a series RL circuit as shown in Fig. 11.40. The switch is closed at time t = 0.

V

R

L

i (t)

Fig. 11.40 RL circuit

For t > 0, the transformed network is shown in Fig. 11.41.

Applying KVL to the mesh,

V

s
RI Ls I

I

V

L

s s
R

L

− RI =

=
+⎛

⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

( )s( )ss ( )s

( )s

0

By partial-fraction expansion,

I
A

s

B

s
R

L

A sI s

V

L

s s
R

L

V

R
s

s

( )s

( )s |

= +
+

=sI )s | ×
+⎛

⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

==

=

0

0

 

V
s

R

Ls

I (s)

Fig. 11.41 Transformed network
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B s
R

L
I s

R

L

V

L

s s
R

L

V

R

I s

s
R

L

s
R

L

+s
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+s= ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

×
+⎛

⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= −
=−

=−

( )s

( )) = +
−⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+

V

R

s

V

R

s
R

L

Taking the inverse Laplace transform,

i
V

R

V

R
e

V

R

R

L
t

R

L
t

( )t = −

=
⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

−

−
0t >1 e L− ⎥ f

 Example 11.80  In the network of Fig. 11.42, the switch is moved from the position 1 to 2 at t = 0, 

steady-state condition having been established in the position 1. Determine i (t) for t > 0.

10 V

i (t)

1

2

1 Ω

1 Ω

1 H

Fig. 11.42

Solution  At t = 0−, the network is shown in Fig 11.43. At t = 0−, the network has attained steady-state 

condition. Hence, the inductor acts as a short circuit.

 
i( )

10

1
10= = A

 

Since the current through the inductor cannot change instantaneously,

i (0+) = 10 A

For t > 0, the transformed network is shown in Fig. 11.44.

Applying KVL to the mesh for t > 0,

 

− − − + =

=
+

I I sI

I

I
s

( )s ( )s ( )s

( )s ( )+s

( )s

10 0

1=) 0

10

2  

Taking inverse Laplace transform,

i (t) = 10e−2t for t > 0

10 V

1 Ω

i (0−)

Fig. 11.43

1

1

10

I (s)

s

Fig. 11.44
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Example 11.81  The network of Fig. 11.45 was initially in the steady state with the switch in the 

position a. At t = 0, the switch goes from a to b. Find an expression for voltage v (t) for t > 0.

2 V

2 Ω a b

2 H

1 H1 Ω
v (t)

+

−

Fig. 11.45

Solution  At t = 0−, the network is shown in Fig 11.46. At 

t = 0−, the network has attained steady-state condition. Hence, the 

inductor of 2H acts as a short circuit.

i( )
2

2
1= = A

Since current through the inductor cannot change instantaneously,

i (0+) = 1 A

For t > 0, the transformed network is shown in Fig. 11.47.

Applying KCL at the node for t > 0,

V

s

V V

s

V
s s

V s

s

( )s ( )s ( )s

( )s

( )s

+
+ +

( )
=

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= −

=
−

= −

2

2 1s
0

1
3

2

1

1

2 3s +
2

2

2 322

1

1 5s3
= −

+

Taking the inverse Laplace transform,

 v (t) = − e−1.5 t     for t > 0

Example 11.82  In the network of Fig. 11.48, the switch is opened at t = 0. Find i(t).

36 V

10 Ω

3 Ω

0.1 H

6 Ω
i (t)

Fig. 11.48

Solution At t = 0−, the network is  shown in Fig. 11.49. At t = 0–, 

the switch is closed and steady-state condition is reached. Hence, 

the inductor acts as a short circuit.

  

i

i

Ti

Li

( )
( )

( )

36

10

36

10 2
3

3)
6

6 3
2

=
+

=
+

=

×3 =

A

 A

2 V

2 Ω

i (0−)

Fig. 11.46

2

2s

1 s V (s)

+

−

Fig. 11.47

36 V

10 Ω

3 Ω
6 Ω

iT (0−)

iL (0−)

Fig. 11.49
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Since current through the inductor cannot change instantaneously,

i
L
(0+) = 2 A

For t > 0, the transformed network is shown in Fig. 11.50.

Applying KVL to the mesh for t > 0,

− ( ) ( ) ( ) =

( )

=

0 0 0

0

0 2

0

. .0

. (( ) (( ) ) .0=

( )

10− .0  3 6( ) ( )
( ) 2

s 33) − I6) − s

) +

I (
..1 9

2

90s9
=

+
Taking inverse Laplace transform,

i(t) = 2e−90 t               for t > 0

 Example 11.83  The network shown in Fig. 11.51 has acquired steady-state with the switch closed 

for t < 0. At t = 0, the switch is opened. Obtain i (t) for t > 0.

2 H

4 Ω10 Ω

4 Ω

i (t)

36 V

Fig. 11.51

Solution At t = 0−, the network is shown in Fig 11.52. At t = 0−, the switch is closed and the network has 

acquired steady-state. Hence, the inductor acts as a 

short circuit.

      

i

i

Ti ( )
( )

( )

36

10

36

10 2
3

3)
4

4 4
1 5.

=
+

=
+

=

×3 =

 A

A

Since current through the inductor cannot change 

instantaneously,

i(0+) = 1.5 A

For t > 0, the transformed network is shown in Fig. 11.53.

Applying KVL to the mesh for t > 0,

− ( ) ( ) ( ) + =

( ) ( ) =

= =
+

4 4( ) − s) 2) 3

8 2( ) + 3

I s(( I s(s 2) − I s(
( sI s

I
s

0

3

2 8+s +
1 5

4
( )s

Taking the inverse Laplace transform,

i(t) = 1. 5e−4 t           for t > 0

Example 11.84  In the network shown in Fig. 11.54, the switch is closed at t = 0, the steady-state 

being reached before t = 0. Determine current through inductor of 3 H.

I(s)

6

3

0.2

0.1s

Fig. 11.50

4 Ω

4 Ω

10 Ω

i (0i −−)

36 V

iT (0T
−)

Fig. 11.52

4

3

2s

4

I (s)

Fig. 11.53
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3 H

2 H 2 Ω

2 Ω

i2 (t)i1 (t)

1 V

Fig. 11.54

Solution At t = 0−, the network is shown in Fig. 11.55. At t = 0−, 

steady-state condition is reached. Hence, the inductor of 2 H acts 

as a short circuit.

i

i

1ii

2i

1

2

0

( )0

( )0

=  A

Since current through the inductor cannot change instantaneously,

i

i

1ii

2i

1

2

0

( )0

( )0

+

+

= A
 

For t > 0, the transformed network is shown in Fig. 11.56.

Applying KVL to Mesh 1,

           

1
2 1 2 0

2 1
1

1

1 2

s
s 1 1 21 2

1I 22
s

− 2 2

1I1 = +1

( )( ) [ (1[ ( ) (2 )]

( )2 2s+ 2s ( )s ( )s

Applying KVL to Mesh 2,

    −2 [I
2
(s) − I

1
(s)] − 2I

2
(s) − 3s I

2
 (s) = 0

 −2I
1
(s) + (4 + 3s) I

2
(s) = 0

By Cramer’s rule,

I

s
s

s

s

s s

s
2

2 2 1
1

2 0

2 2 2

2 4 3

2

4

1

3
( )s

( )s 1

( )s2 2 ( )s4 3 (
=

+ +s2 1

−
+ −s2

− +2 4

=
)s2 (4 −

=
+

sss

s

s s s s
2 7 2s

1

3
1

3

1

3

1

3

+ 7s
=

+

+⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=
+s

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

)
( )s 2+

( )s 1+

( )s 2+ 2

By partial-fraction expansion,

I
A

s

B

s

C

s
2

2 1

3

( )s = +
+

+
+

A s I

s
s

s

=s I

+s
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

==

=

2 0

0

1

3

1

3

1

2
( )ss

( )s +1

( )s + 2

B I

s s
S

s

=
+⎛

⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= −=−

=−

( )s +s ( )s

( )s +
1

3

1

3

1

10
2 2

2

 

1 V 2 Ω
i1 (0−)

Fig. 11.55

3s

2s 2

2

1

I2 (s)I1 (s)

1
s

Fig. 11.56
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C s I
ss

s

+s
⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= = −=−

=−

1

3

1

3 2

5
2 1

3

1

3

( )s

( )s +1

( )s + 2
 

I
s s

s
2

1

2

1 1

10

1

2

2

5

1

1

3

( )s = −
+

−
+

Taking inverse Laplace transform

i e e tt
t

2i
2

1

3
1

2

1

10

2

5
0( )t = − >t− e 3− −

for

 Example 11.85  In the network of Fig. 11.57, the switch is closed at t = 0 with the network previ-

ously unenergised. Determine currents i
1
(t).

1 H

10 Ω

10 Ω

10 Ω

100 V

i1 (t) i2 (t)

1 H

Fig. 11.57

Solution For t > 0, the transformed network is shown in Fig. 11.58.

s

10

10

10

100

I1 (s) I2 (s)

s

s

Fig. 11.58

Applying KVL to Mesh 1,
100

10 10 0

10
1

1 1

1 20

s
I1 sI1 10

I1I I1010

−10I1 10 [ ]1 2I1 I1I1 =

1I1 =

( )( )s ( )s s s

( )20s 2020 ( )s ( )s
0000

s

 

Applying KVL to Mesh 2,

− [ ] − =

− + =

10 10 0

10 0

− 2 20

1 2+

s I I10−10

I1 I

( )s ( )s

( ) ( )200s + 20+ 0 ( )s

By Cramer’s rule,

I

s

s

s

s
1 2

100
10

0 2s 0

20 10

10 20

100

100

100
( )s

( )s 20

( )s 20
=

−

+ −20

− +s10

=
−2)20

=
( )((

( )

( )

( )( )s( s(
=

)(

100
2
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By partial-fraction expansion,

  

I
A

s

B

s

C

s

A s I

s

1

1 0s

0

10 30

100

( )s

( )ss ||
( )s 20

( )s 10 ( )s 30

= +
+

+
+

=0s I )ss |
)10 (s

=
=

2022

3

100
51 10

10

1

B I1
s

C I1

s

s

= = −
=−

( )10s +s ( )s |
( )20s +

( )30s +
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Taking inverse Laplace transform,

i e et te1ii
10 3020

3
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( )t = − − t10  

Similarly,
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By partial-fraction expansion,
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Taking inverse Laplace transform,

i e e tt t
2i

10 3010

3
5

5

3
0( )t = − >te t30− t10 fo

11.12    RESISTOR–CAPACITOR CIRCUIT

Consider a series RC circuit as shown in Fig. 11.59. The switch is 

closed at time t = 0.

For t > 0, the transformed network is shown in Fig. 11.60.

Applying KVL to the mesh,

V

s
RI

Cs
I− −RI =( )s( )ss ( )s

1
0

i (t)

V

R

C

Fig. 11.59 RC circuit
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R
Cs

I
V

s

I

V

s

R
Cs

V

s
RCsCC

Cs

V

R

s
RC

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
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=

=
+

= =
+

1

1 1RCsCC + 1
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Taking the inverse Laplace transform,

i
V

R
e tRC

t

( )t >t= e
−

1

0of

Example 11.86  In the network of Fig. 11.61, the switch is moved from a to b at t = 0. Determine 

i (t) and v
c
 (t).

3 F
6 F

1 Ω1 Ω

i (t)

10 V vc (t)

a b
+

−

Fig. 11.61

Solution  At t = 0 ,−  the network is shown in Fig. 11.62. At t = 0–, the network has attained steady-state 

condition. Hence, the capacitor of 6 F acts as an open circuit.

 v
6 F 

(0−) = 10 V

  i
 
(0−) = 0

v
3 F 

(0−) = 0
Since voltage across the capacitor cannot change 

instantaneously,

 v
6 F 

(0+) = 10 V

 v
3 F 

(0+) = 0
For t > 0, the transformed network is shown in 11.63.

Applying KVL to the mesh for t  > 0,
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⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= =
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3

60

6 3s +
10

0 5.  

Taking the inverse Laplace transform,

i(t) = 10e−0.5t         for t > 0

Voltage across the 3 F capacitor is given by

V
s

IcVV ( )s ( )s( )s
( . )

= =I )s
1

3

10

3s(s 5

I (s)

R

1

Cs

V

s

Fig. 11.60 Transformed network

1 Ω

10 V v6F (0
−)

i (0−)

Fig. 11.62

I (s)

1

Vc (s)
1

3s

1

6s

10

s

Fig. 11.63
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By partial-fraction expansion,

V
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1 20
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Taking the inverse Laplace transform,

v ec
t

t

( )t

( )t

= −

= (

−20
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20

3

20

3
0t >)e t

0 5.

0 5 f

Example 11.87  The switch in the network shown in Fig. 11.64 is closed at t = 0. Determine the 

voltage cross the capacitor.

2 F

10 Ω

10 Ω10 V vc (t)

Fig. 11.64

Solution At t = 0−, the capacitor is uncharged.

v
c
(0−) = 0

Since the voltage across the capacitor cannot change instantaneously,

v
c
(0+) = 0

For t > 0, the transformed network is shown in Fig. 11.65.

Applying KCL at the node for t > 0,

V
s V V

s

cVV
cVVcVV

( )s
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+ +c ( )

=

10

10 10 1
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2 0
1

1

2

0 5

1

V 0 s
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V
s s

0cVV

cVV

( ) . (2V2 cVV )
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( .2 02 ) ( .0s )

=s00 (V2 cVV2 )

= =

By partial-fraction expansion,
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Fig. 11.65
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B s
s

V
s s

s
s

cVV

= = − = −

= −
+

=−
=−

( .s +s ) (VcVV )

( )s

1.
0 5. 0 5.

0 1.
5

5 5

0 1.

0 1.
0 1.

Taking inverse Laplace transform,

v t e tc
t( ) = >−5 5− for 10 0

Example 11.88  In the network of Fig. 11.66, the switch is closed for a long time and at t = 0, the 

switch is opened. Determine the current through the capacitor.

v (t)

0.5 F

1 Ω
1 Ω

2 A

i2 (t)i1 (t)

Fig. 11.66

Solution  At t = 0−, the network is shown in Fig. 11.67. At t = 0−, the switch is closed and steady-state 

condition is reached. Hence, the capacitor acts as an open circuit.

 v
c
 (0−) = 0

1 Ω

1 Ω
2 A

vc (0
−)

v (0−)

Fig. 11.67

Since voltage across the capacitor cannot change instantaneously,

 v
c
 (0+) = 0

For t > 0, the transformed network is shown in Fig. 11.68.

Applying KVL to two parallel branches,

2
1 1 2

s
I1 I1 I2( )s ( )s( ) ( )s+ =I1 )s

Applying KCL at the node for t > 0,
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1 2
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( )s ( )s( )

+ =I1 )s −
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I s
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2
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1

1
( )s =

+
=
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V (s)

I2(s)I1(s)

2
s

2
s

1
1

Fig. 11.68
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Taking the inverse Laplace transform,

i t e tt
1ii for ( ) = >e t− 0  

Example 11.89  In the network of Fig. 11.69, the switch is moved from a to b, at t = 0. Find v(t).

1 F

4 Ω

2 Ω

6 V
v (t)

a

b +

−
2 Ω

Fig. 11.69

Solution At t = 0−, the network is shown in Fig 11.70. At t = 0−, steady-state condition is reached. Hence, 

the capacitor acts as an open circuit.

 v( ) 6)
2

4 2
2×6 = V  

Since voltage across the capacitor cannot change 

instantaneously,

 v (0+) = 2 V

For t > 0, the transformed network is shown in Fig. 11.71.

Applying KCL at the node for t > 0,
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Taking the inverse Laplace transform,

 
v t e t

t

( ) = >t
−

2 fe o

2

3 0
 

 Example 11.90  The network shown in Fig. 11.72 has acquired steady-state at t < 0 with the switch 

open. The switch is closed at t = 0. Determine v (t).

2 Ω4 V

2 Ω
+

−

v (t)1 F 1 F

Fig. 11.72

4 Ω

6 V 2 Ω
+

−
v (0−)

Fig. 11.70

V (s)

22

4

1
s

2
s

Fig. 11.71
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Solution At t = 0−, the network is shown in Fig 11.73. At 

t = 0–, steady-state condition is reached. Hence, the capacitor of 

1 F acts as an open circuit.

v( ) 4)
2

2 2
2×4 = V

Since voltage across the capacitor cannot change instantaneously,

 v(0+) = 2 V

For t > 0, the transformed network is shown in Fig. 11.74.

1
s

2
s

1
s

2

2

4
s

v (s)

Fig. 11.74

Applying KCL at the node for t > 0,

V
s V

V
s

s

V

s

sV V
s

( )s
( )s

( )s
( )s

( )s ( )s

−
+ +

( )
−

+ =
( )

=V ( )s +

4

2 2

2

1 1
+ 0

2
2

2

V s

s

s

s s s s s
( )s

( )s
=

+
= = − = −

+

2
2
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2 2
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2 1

0 5.

Taking the inverse Laplace transform,

v t e tt( ) = >2 fe t− − o50 0  

11.13    RESISTOR–INDUCTOR–CAPACITOR CIRCUIT

Consider a series RLC circuit shown in Fig. 11.75. The switch is closed at time t = 0.

R

L

C

V

i (t)

Fig. 11.75 RLC circuit

For t > 0, the transformed network is shown in Fig. 11.76.

2 Ω4 V

2 Ω

v (0v −)

Fig. 11.73
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Applying KVL to the mesh,
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By partial-fraction expansion, of I(s),
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Taking the inverse Laplace transform,

i
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L
e e k e k es t s t s t s t( )t
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⎣
⎡⎡ ⎤

⎦
⎤⎤ = +k es
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1 2k e kk+k e2et s 2k et s+t

 

where k
1
 and k

2
 are constants to be determined and s

1
 and s

2
 are the roots of the equation.

1

Cs

Ls

R

V

s
I (s)

Fig. 11.76 Transformed network
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Now depending upon the values of s
1
 and s

2
, we have 3 cases of the response.

Case I When the roots are real and unequal, it gives an overdamped response.

R

L LC2

1

0

>

>
In this case, the solution is given by

i t) = e e t  

or  i tt > 0for  

Case II When the roots are real and equal, it gives a critically damped response.

R

L LC2

1

0=
In this case, the solution is given by

i(t) = e−at (k
1
 + k

2
 t)              for t > 0

Case III When the roots are complex conjugate, it gives an underdamped response.

R

L LC2

1

0

<

<
In this case, the solution is given by

i t  

where  s1 2 0
2= −

Let 2 2 2 2= = j d

where  j 1  

and  −2 2  

Hence 

i t e td

e
2

+
⎡

j
−

2

−  

>− t− 0for

Example 11.91  The switch in Fig. 11.77 is opened at time t = 0. Determine the voltage v(t) for t > 0.

0.5 Ω2 A 0.5 H 0.5 F v ( )

+

Fig. 11.77
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Solution  At t = 0−, the network is shown in Fig. 11.78. At t = 0−, the network has attained steady-state 

condition. Hence, the inductor acts as a short circuit and the capacitor acts as an open circuit.

0.5 Ω v (0−)

iL (0−)

2 A

+

−

Fig. 11.78

i
L
(0−) = 0

v(0−) = 0

Since current through the inductor and voltage across the capacitor cannot change instantaneously,

i
L
(0+) = 0

v(0+) = 0

For t > 0, the transformed network is shown in Fig. 11.79.

Applying KCL at the node for t > 0,

V V
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=

+ +V )s =

V s
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s s s
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=
+s+

=
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=

2

2
0 5.0 5. 2

4

4+s

4
2 2( )+ 4 4+

Taking inverse Laplace transform,

v t t e tt( ) = >e tt−4tt for 2 0  

Example 11.92  In the network of Fig. 11.80, the switch is closed and steady-state is attained. At 

t = 0, switch is opened. Determine the current through the inductor.

2.5. Ω

0.5 H5 V
200 μF

Fig. 11.80

Solution  At t = 0−, the network is shown in Fig. 11.81. At t = 0–, the switch is closed and steady-state 

condition is attained. Hence, the inductor acts as a short circuit and the capacitor acts as an open circuit.

Current through inductor is same as the current through the resistor.

1

0.5s
0.5 V(s)0.5s

+

−

2
s

Fig. 11.79
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iLi ( )
5

2 5.
2= =  A

Voltage across the capacitor is zero as it is connected in parallel 

with a short.

 v
c
 (0−) = 0

Since voltage across the capacitor and current through the 

inductor cannot change instantaneously,

           i
L
 (0+) = 2 A

  v
c
 (0+) = 0

For t > 0, the transformed network is shown in Fig. 11.82.

Applying KVL to the mesh for t > 0,

   

−
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.55
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100002

s
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+

Taking inverse Laplace transform,

i t t t( ) >tt= 2 cos 1 of00 0

Example 11.93  In the network shown in Fig. 11.83, the switch is opened at t = 0. Steady-state con-

dition is achieved before t = 0. Find i(t).

1 Ω1 F

0.5 H

1 V

i (t)

Fig. 11.83

Solution At t = 0−, the network is shown in Fig 11.84. At 

t = 0−, the switch is closed and steady-state condition is achieved. 

Hence, the capacitor acts as an open circuit and the inductor acts as 

a short circuit.

v
c
 (0−) = 1 V

i (0−) = 1 A

Since current through the inductor and voltage across the 

capacitor cannot change instantaneously,

2.5 Ω

5 V vc (0
−)

iL (0
−)

Fig. 11.81

0.5s

1I (s)

1

200 × 10−6
s

Fig. 11.82

i (0−)

1 V
1 Ω

Fig. 11.84
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v
c
(0+) = 1 V

i(0+) = 1 A

For t > 0, the transformed network is shown in Fig. 11.85.

Applying KVL to the mesh for t > 0,
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Taking the inverse Laplace transform,

i t e t tt tt( ) = e t >−tcos st ee+tt i for 0  

 Example 11.94  In the network shown in Fig. 11.86, the switch is closed at t = 0. Find the currents 

i
1
(t) and i

2
(t) when initial current through the inductor is zero and initial voltage on the capacitor is 4 V.

1 Ω

1 Ω

1 F1 H

1 Ω10 V

i1 (t) i2 (t) +

−
4 V

Fig. 11.86

Solution For t > 0, the transformed network is shown in Fig. 11.87.

1

1

s

1

I1 (s) I2 (s)
1
s

4
s

10
s

Fig. 11.87

Applying KVL to Mesh 1,
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Fig. 11.85
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Applying KVL to Mesh 2,
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By partial-fraction expansion,
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Taking inverse Laplace transform,
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1ii 5 2 fo( ) = 5 >− 0
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s
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2
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Taking inverse Laplace transform,

i te tt tte2i 3 2e t 0( )t = 3e >t fo

11.14    RESPONSE OF RL CIRCUIT TO VARIOUS FUNCTIONS

Consider a series RL circuit shown in Fig. 11.88. When the switch is closed at t = 0,  i( ) ( ) .i) ( 0+) (i) ( =)i(
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R

L

i(t)

v (t) +
−

Fig. 11.88 RL circuit

For t > 0, the transformed network is shown in Fig. 11.89.

Applying KVL to the mesh,

V R I Ls I

I
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(a) When the unit step signal is applied,
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Taking Laplace transform,
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By partial-fraction expansion,
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R
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I (s)

V (s) +
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Fig. 11.89 Transformed network
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Taking inverse Laplace transform,

i
R
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L
t
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⎞
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(b) When unit ramp signal is applied,

v r t( )t ( )t( )t= =r )t for 0t >  

Taking Laplace transform,
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By partial-faction expansion,

1 1

2
2L

s s
R

L

A

s

B

s

C

s
R

L
+⎛

⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= + +
+

 

1 2

L
As s

R

L
B s

R

L
Cs= +As s

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+s+ B
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+

Putting s = 0,

B
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=
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R

L
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C
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R
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Comparing coeffi cients of s2,
A C
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I
L
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1 1 1 1L

2

2 2s R
+

2
( )s

 

Taking inverse Laplace transform,
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(c) When unit impulse signal is applied,

v( )t ( )t= δ
Taking Laplace transform,

V

I
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=
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1 1
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Taking inverse Laplace transform,

i
L

e t

R

L
t
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Example 11.95  At t = 0, unit pulse voltage of unit width is applied to a series RL circuit as shown 

in Fig. 11.90. Obtain an expression for i(t).

v (t )

0

1

1
t

+
−v (t )

i (t )

1 H

1 Ω

Fig. 11.90

Solution

  v u t u t( )t −t= u −(( ) ( )1

V
s

e

s

e

s

s s

( )s = − =
−1 1e s−s

For t > 0, the transformed network is shown in Fig. 11.91.

Applying KVL to the mesh,
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I
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Taking inverse Laplace transform,

i u e u u e u
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( )e( t ( )t [

( )t

(

= −u )t u(t

= (

−t ee (t)te ue t( )t

ue t (ttt −− −1 1 0>) ] ( )t( f

 Example 11.96  For the network shown in Fig. 11.92, determine the current i(t) when the switch is 

closed at t = 0. Assume that initial current in the inductor is zero.

5 Ω

2 H

i(t)

r (t − 3) +
−

s

I (s )

V (s )

1

+
−

Fig. 11.91
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Fig. 11.92

Solution For t > 0, the transformed network is shown in Fig. 11.93.

Applying KVL to the mesh for t > 0,
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By partial-fraction expansion,
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Comparing coeffi cients of s2, s and s0,
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Solving these equations,
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Taking inverse Laplace transform,

i r tt( )t . ( ) . ( )t . (e ut )( )= − ) −t0. 3t(u − 2. 0) +) 32 3  

Example 11.97  Determine the expression for v
L
 (t) in the network shown in Fig. 11.94. Find v

L
(t) 

when (i) v
s
(t) = d (t), and (ii) v

s
(t) = e−t u(t).

5 Ω

1
2

H vL (t )

+

−

Vs (t )
+
−

Fig. 11.94

5
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I (s)

+
−

e
−3s

s
2

Fig. 11.93
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Solution For t > 0,  the transformed network is shown in Fig. 11.95.

By voltage-division rule,

V V
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(a) For impulse input,
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Taking inverse Laplace transform,
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By partial-fraction expansion,
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Taking inverse Laplace transform,
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 Example 11.98  For the network shown in Fig. 11.96, determine the current i (t) when the switch is 

closed at t = 0. Assume that initial current in the inductor is zero.

2 Ω

1 H

i (t)

2d (t − 3)
+
−

Fig. 11.96

5

s
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+
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Fig. 11.95
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Solution For t > 0, the transformed network is shown in Fig. 11.97.

Applying KVL to the mesh for t > 0,
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Taking inverse Laplace transform,

i t( )t ( )( )= >2e u(t)e u(t− 02(t(t(t fo

Example 11.99  Determine the current i(t) in the network shown in Fig. 11.98, when the switch is 

closed at t = 0.

i (t )

5 H

10 Ω

50 sin 25 t

Fig. 11.98

Solution For t > 0,  the transformed network is shown in 

Fig. 11.99.

Applying KVL to the mesh for t > 0,
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By partial-fraction expansion,
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Comparing coeffi cients,
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Fig. 11.97
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Fig. 11.99
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Taking the inverse Laplace transform,

i t t e tt( )t . cos . si .= − +t >−0 397 25 0 032 25 0 397 02 fo

Example 11.100  Find impulse response of the current i(t) in the network shown in Fig. 11.100.

+
−

i (t )

i1 (t )

d (t )
2 H

1 Ω

1 Ω

Fig. 11.100

Solution The transformed network is shown in Fig. 11.101.
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By current-division rule,
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Taking inverse Laplace transform,

i e u tt( )t ( )t >t= e ut (t−1

2
00 5. of

Example 11.101  The network shown in Fig. 11.102 is at rest for t  <  0. If the voltage 

v u t( )t ( )t cos (t A )= u )t cos t δ  is applied to the network, determine the value of A so that there is no transient term 

in the current response i(t).

2 H

i (t)

v (t )

1 Ω

Fig. 11.102

v u t
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=
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2 1
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Fig. 11.101
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Solution For t > 0,  the transformed network is shown in Fig. 11.103.

Applying KVL to the mesh for t > 0,
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The transient part of the response is given by the fi rst term. Hence, for the transient term to vanish, K
1
 = 0.
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11.15    RESPONSE OF RC CIRCUIT TO VARIOUS FUNCTIONS

Consider a series RC circuit as shown in Fig. 11.104.

+
−v (t )

i (t )

R

C

Fig. 11.104 RC circuit

For t > 0, the transformed network is shown in Fig. 11.105.

Applying KVL to the mesh,
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(a) When unit step signal is applied,
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Fig. 11.103
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Fig. 11.105 Transformed network
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Taking Laplace transform,
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Taking inverse Laplace transform,
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(b) When unit ramp signal is applied,
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V
s

I

s
s

R s
RC

R

s s
RC

( )s

( )s

=

=
×

+⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=
+⎛

⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

1

1

1

1

1

2

2
 

By partial-fraction expansion,
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Taking inverse Laplace transform,
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(c)  When unit inpulse signal is applied,

v(t) = d (t)
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Taking Laplace transform,
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Taking inverse Laplace transform,
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Example 11.102  A rectangular voltage pulse of unit height and T-seconds duration is applied to 

a series RC network at t = 0. Obtain the expression for the current i(t). Assume the capacitor to be initially 

uncharged.

(a)

v (t )

0 T

1

t

(b)

+
−v (t )

i (t )

R

C

Fig. 11.106

Solution  v(t) = u(t) − u(t − T)

V
s

e

s

e

s

sT sT

( )s = − =
− −1 1e sT−sT

For t > 0,  the transformed network is shown in Fig. 11.107.

Applying KVL to the mesh for t > 0,

V RI
Cs

I

I
V

R
Cs

R
s

s
RC

V
e

R s

sT

( )s ( )s( )s ( )s

( )s
( )s

( )s

− −RI ( )s =

=
+

=
+

=
−

+

−

1
0

1

1

1

1

1

RCRR

R
s
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e

s
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⎞
⎠⎟
⎞⎞
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=
+

−
+

⎡

⎣

⎢
⎡⎡

⎢
⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎦⎦

⎥⎥
−1 1⎢

⎢
⎢⎢

1 1

Taking inverse Laplace transform,

i
R

e u e u tRC
t

RC( )t ( )t ( )t T
( )t T

e u(t=
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

−⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠1

1 1⎞⎞⎞ ⎛⎛⎛

fo >> 0
 

 Example 11.103  For the network shown in Fig. 11.108, determine the current i(t) when the switch 

is closed at t = 0 with zero initial conditions.

+
−V (s )

I (s )

R

1

Cs

Fig. 11.107
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+
−

i (t )

3 Ω

1 F2r (t − 2)

Fig. 11.108

Solution For t > 0, the transformed network is shown in Fig. 11.109.

Applying KVL to the mesh for t > 0,

2
3

1
0

3
1 2

2
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2

2

2

2

2

2

e

s
I

s
I

s
I
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I
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s
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− −3 I =
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⎝⎜
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⎞
⎠⎟
⎞⎞
⎠⎠

=

=
+

( )s( )ss ( )s

( )s

( )s
11

0 67

33

2

s

e

s

s

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=
−

( .0s + )

By partial-fraction expansion,

0 67

33 33

0 67

0 33
2

0 67
2

0

0 33

( .0 ) .0s(

A B

A
s

B
s

s

s

= +

=
+

=

= = −

=

=−

III e
s s

e

s

e

s

s
s se

( )s
s s

−= e
+

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=
+

−
−

2
2 2ss2 2

0 3. 3
2 2

e
−

0 3. 3

Taking inverse Laplace transform,

i u e u t( )t ( )t ( )t( )= − >2u(tu t 2e u(t)e u(t− 00. 2t(t(( −t( fo

 Example 11.104  For the network shown in Fig. 11.110, determine the current i(t) when the switch 

is closed at t = 0 with zero initial conditions.

+
−d (t )

i (t )

5 Ω

2 F

Fig. 11.110

Solution For t > 0, the transformed network is shown in Fig. 11.111.

I (t)

3

1
ss2

+
−

2e−2s

Fig. 11.109
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Applying KVL to the mesh for t > 0,

1 5
1

2
0

5
1

2
1

1

5
1

2
2

10 1
0 2

−5 =

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

=
+

=
+

=

I
s

I

s
I

I

s
s

s
s

( )s ( )s

( )s

( )s

ss
s

s

s

s

+

=
+ −
+

= −
+

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= −
+

0 1
0 0 1 0 1

0 1

0 2 1
0 1

0 1

0 2
0 02

0

. (2 . .0 )

..1

Taking inverse Laplace transform,

i t e ut( )t . ( ) . ( )tt(= −0.0 0. 2 0 1.δ  

Example 11.105  For the network shown in Fig. 11.112, fi nd the response v
0
 (t).

vo (t )vs (t ) =
+
−

+

−

1

4
F1

2
cost u(t )

2 Ω

 

Fig. 11.112

Solution For t > 0,  the transformed network is shown in Fig. 11.113.

V
s

s
sVV ( )s =

+
1

2 12

By voltage-division rule,

V V s

s

V

s

s
sVVoVV

sVV
( )ss ( )s( )

( )s

( )s ( )s
= ×VVV )s

+
=

+
=

4

2
4

2

2 )()(s2

By partial-fraction expansion,

V
As B

s

C

s

s c

s s

oVV ( )s

( )As B ( )s ( )s

( )A C ( )

=
+
+

+
+

As

A + (

2

2

2

1 2

c) (s+)

2 (s)A BA + ( )((

 

I (s)

1

5

+
−

1
2s

Fig. 11.111

Vo (s )Vs (s )
+
−

2

+

−

4
s

 

Fig. 11.113
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Comparing coeffi cient of s2, s and s0,

A C

A

B C

=C 0

2 1A B+ =B

2 0B C =C
Solving the equations,

A

B

C

V
s

s s

s

s s
oVV

=
=
= −

=
+
+

−
+

=
+

+
+

0 4

0 2

0 4

0 4 0 2

1

0 4

2

0 4

1

0 2

12 2s+ +1 2 2
( )s

. .s +4 0 . .4 0
−−

+
0 4

2s

 

Taking the inverse Laplace transform,

i t t tt( )t cos si fe ft otcos= >t− e0 4.0 4. 0 2. 0 4.. 02

Example 11.106  Find the impulse response of the voltage across the capacitor in the network 

shown in Fig. 11.114. Also determine response v
c
 (t) for step input.

vc (t )v (t )
+

−
+
−

1 H

1 F

2 Ω

Fig. 11.114

Solution For t > 0,  the transformed network is shown in Fig. 11.115.

By voltage-division rule,

    

V V s

s
s

V

s s

V

cVV ( )s ( )s( )

( )s ( )s

( )s

= ×V )s

+ +s

=
+

=

1

2
1

1+s2 2( )+ 2 1+

(a) For impulse input,
V

VcVV

( )s

( )s
( )s

=

=

1

1
2

 

Taking inverse Laplace transform,

v te uc
t( )t ( )t( )t= te ut )t− for 0t >t

(b) For step input,

V
s

V
s

cVV

( )s

( )s
( )s

=

=

1

1
2

 

Vc (s )V (s )

+

−
+
−

1

2

s

s

 

Fig. 11.115
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By partial-fraction expansion,

V
A

s

B

s

C

A Bs CsCC

A B s

cVV ( )s
( )s

( )s ( )s

( )s s (

= +
+

+

+ Bs(s

= A s +

1

1 A= A s

s

2

2

2 2B) ( s Css sCC

s s A

)

( )A B ( )A B C= (A A s)C2

Comparing coeffi cient of s2, s1 and s0,

  

A

A B

B A

A C

C A

=
+ =B

= −

+

1

0

1

2 0A B C+ +B =
2A B− =B − 1 1= −

 

V
s s

cVV ( )s
( )s

= −
+

−
1 1

1

1
2

Taking inverse Laplace transform,

v u e u te uc
t tu te

t t

( )t ( )t ( )tt ( )t

( )t t

= −u )t

= (

−t

0t >tutt)e tet tt ut)te ttet f

Example 11.107  For the network shown in Fig. 11.116, determine the current i(t) when the switch 

is closed at t = 0 with zero initial conditions.

i (t )

5 Ω

5r (t − 1)
1

6
F

+
−

1 H

 

Fig. 11.116

Solution For t > 0,  the transformed network is shown in Fig. 11.117.

Applying KVL to the mesh for t > 0,

   

5
5

6
0

5
6 5

5

2

2

e

s
I sI

s
I

I sI
s

I
e

s

I

s
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− −5I − =I

+ +sI =

=

( )s( )ss ( )s ( )s( )ss
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e
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=
( )s + ( )s + ( )2 s +s

5

)(s +s

I (s) 6

5

s

s

s2

+
−

5e−s

Fig. 11.117



11.15 Response of RC Circuit to Various Functions 11.75

By partial-fraction expansion,

1

3 2

1 1
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Taking inverse Laplace transform,

i u e u e ue( )t ( )t ( )tt ( )t( ) ( )t= u t + e u(tt e u t−5

6

5

3

5

2
0t) >3(t(t(t 2(tt f

 Example 11.108  For the network shown in Fig. 11.118, the switch is closed at t = 0. Determine 

the current i(t) assuming zero initial conditions.

i(t )

2 Ω 1 H

0.5 Fsin t

Fig. 11.118

Solution For t > 0, the transformed network is shown in Fig. 11.119.

Applying KVL to the mesh for t > 0,

        

1

1
2

2
0

2
2 1
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By partial-fraction expansion,
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Comparing coeffi cients of s3, s2, s1 and s0,

A C

A

A B C

=C

+B =

0

2 0A B D+ +B =

2 2A 1

2 0B D+ =D

  

Solving these equations,

A = 0.2, B = 0.4, C = −0.2, D = −0.8
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Taking inverse Laplace transform,

i t t e t t

t t

t tt( )t cos si ce os see i

cos si

tcos= −te−

t= cos

−t0.0 2. 0 4. 0 2.0 2 0 6.

0 2.. 0 4. − +−− >− te tt ( . cos +t sin )t2. 0 6. 0fo
 

 Example 11.109   For the network shown in Fig. 11.120, the switch is closed at t = 0. Determine 

the current i(t) assuming zero initial conditions in the network elements.

i(t )

5 Ω 1 H

0.25 F
+
−6e−2t

Fig. 11.120

Solution For t > 0, the transformed network is shown in Fig. 11.121.

Applying KVL to the mesh for t > 0,
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By partial-fraction expansion,
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 Taking inverse Laplace transform,

i e ute t( )t ( ) ( )t ( )= −6 2e utu( )t(tte u(t− 0t >t4 e ut ( )t( )te ut (t2 4t t ( )tt tt 4 − f

Example 11.110  The network shown has zero initial conditions. A voltage v
i
(t) = d  (t) applied to two 

terminal network produces voltage v
o
(t) = [e−2 t + e−3 t] u(t). What should be v

i
(t) to give v

o
(t) = t e−2 t u(t)?

+

−

+

−
vo (t )vi (t ) Network

Fig. 11.122

Solution For v
i
(t) = d  (t),
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System function H
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From Eq. (i),
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H
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By partial-fraction expansion,
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Taking inverse Laplace transform,

v e e ti
t t( )t .= e >−2 2t2tt 50 5. 0for

Example 11.111  A unit impulse applied to two terminal black box produces a voltage 

v
o
(t) = 2e−t −e−3t. Determine the terminal voltage when a current pulse of 1 A height and a duration of 2 seconds 

is applied at the terminal.

+

−

is (t) vo (t )Black box

Fig. 11.123

Solution  v e e
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Taking the inverse Laplace transform,
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Exercises

Find 11.1 L f t{ (f )}′ of f t
t

t
( )t

cos
= ⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
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1 2cos−

` s
s

s
log

2 4+⎛

⎝
⎜
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⎜⎝⎝
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⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

⎡

⎣

⎢
⎡⎡

⎢⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥⎦⎦

⎥⎥

Find Laplace transform of the follwoing 11.2 

function:
f t t( )t = +t

=
1

3

0 2

2>t

1 2

s

s( )1 2e s⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

For the network shown in Fig 11.125, the 11.3 

switch is closed at t = 0. Find the current i1(t) 

for t > 0.

100 Ω

50 Ω

i1 (t )

100 V 4 H

Fig. 11.125

[i
1
(t) = 3 − e−25 t]

Determine the current 11.4 i(t) in the network of 

Fig. 11.126, when the switch is closed at t = 0. 

The inductor is initially unenergized.

2 Ω
2 Ω

2 Ω

i (t )

24 V 0.5 H

Fig. 11.126

[i(t) = 4(1 − e−6t)]

In the network of Fig. 11.127, after the switch 11.5 

has been in the open position for a long time, 

it is closed at t = 0. Find the voltage across the 

capacitor.

Ω 1 F

v (t )

10 A
1

2

Ω1

8

Fig. 11.127

[v(t) = 1 + 4 e−10t]

The circuit of Fig. 11.128, has been in the 11.6 

condition shown for a long time. At t = 0, 

switch is closed. Find v(t) for t > 0.

3 Ω

5 Ω

2 Fv (t )20 V

Fig. 11.128

[v(t) = 7.5 + 12.5 e−(4/15)t]

Figure 11.129 shows a circuit which is in the 11.7 

steady-state with the switch open. At t = 0, the 

switch is closed. Determine the current i (t). 

Find its value at t = 0.114 μ seconds.

800 Ω

400 Ω 200 Ω12 V

i (t )

0.001 μF

Fig. 11.129

[i(t) = 0.00857 + 0.01143 e−8.75 × 10
6
t, 0.013 A]

Find 11.8 i(t) for the network shown in Fig. 

11.130.

10 Ω

5 Ω 5 Ω50 V

0.5 F1 F

i (t )

Fig. 11.130
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[i(t) = 0.125 e−0.308t + 3.875 e−0.052t]

Determine 11.9 v(t) in the network of Fig. 11.131 

where i
L
(0−) = 15 A and v

c
(0−) = 5 V.

0.33 Ω10 V 1 F

0.5 H

+

−

v (t )

Fig. 11.131

[v(t) = 10 − 10e−t + 5e−2t]

  The network shown in Fig. 11.132 has acquired 11.10 

steady state with the switch at position 1 for 

t < 0. At t = 0, the switch is thrown to the 

position 2. Find v(t) for t > 0.

2 Ω

3 Ω

1 2

2 V

0.5 F
1 H

+

−

v (t )

Fig. 11.132

[v(t) = 4e−t − 2 e−2t]

  In the network shown in Fig. 11.133, the 11.11 

switch is closed at t = 0. Find current i
1
(t) for 

t > 0.

3 Ω

1 Ω

1 Ω1 H

i1 (t ) i2 (t )
20 V

1
3

F

Fig. 11.133

[i
1
(t) = 5 + 5e−2t − 10e−3t]

In the network shown in Fig. 11.134, the 11.12 

switch is closed at t = 0. Find the current 

through the 30 Ω resistor.

10 Ω

20 Ω 30 Ω

1 H 2 H

10 V

Fig. 11.134

[i(t) = 0.1818 − 0.265 e−13.14t + 0.083 e−41.86t ]

The network shown in Fig. 11.135 is in steady 11.13 

state with s
1
 closed and s

2
 open. At t = 0, s

1

is opened and s
2
 is closed. Find the current 

through the capacitor.

2 Ω 2 H

3 H

s1 s2

10 V 1 μF

Fig. 11.135

[i(t) = 5 cos (0.577 × 103 t)]

In the network shown in Fig. 11.136, fi nd 11.14 

currents i
1
(t) and i

2
(t) for t > 0.

10 Ω

40 Ω
i1 (t ) i2 (t )

50 V 0.2 F

Fig. 11.136

[i
1
(t) = 5 e−0.625t, i

2
(t) = 1 − e−0.625t ]

For the network shown in Fig. 11.137, fi nd 11.15 

currents i
1
(t) and i

2
(t) for t > 0.

5 Ω

5 Ω

0.1 H
i1 (t ) i2 (t )

50 V 20 μF

Fig. 11.137
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